Skip to main content
Log in

Role of Aluminium Concentration on the Structural, Morphological, and Optical Properties of ZnS Nanoparticles

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The synthesis and study of nanoparticles of different materials have become an important research discipline over the past few decades. This study aims to explore the role of Al3+ ion concentration on the structural, morphological, compositional and optical properties of ZnS nanoparticles. Direct co-precipitation is employed to synthesize pristine and Al-doped ZnS nanoparticles (Zn1-xAlxS with x = 0 ≤ x ≤ 0.12) using aqueous solutions of Zn(CH3COO)2, Na2S and Al2(SO4)3 in the presence of ethylenediaminetetraacetic acid (EDTA) as a stabilizing agent. The structural analysis showed that Zn1-xAlxS nanoparticles are crystallized in the cubic structure and exhibit preferred orientation along the (111) direction. The different structural parameters are observed to fluctuate with Al incorporation in ZnS but their crystal structure remains unaltered. The surface morphology of Zn1-xAlxS nanoparticles is observed to be densely packed with spherically shaped crystallites which varied with doping. The chemical species and elemental composition of the synthesized nanoparticles are identified by Fourier transform infrared spectroscopy (FT-IR) and energy dispersive X-ray spectroscopy (EDS), respectively. UV-visible spectra revealed a blueshift in the absorption edge with increasing concentration of Al in Zn1-xAlxS nanoparticles. The optical band gap values are found to be greater than that of the bulk value of ZnS which confirms quantum confinement in the synthesized nanoparticles.

Graphic Abstract

The synthesis and study of nanoparticles of different materials have become an important research discipline over the past few decades. This study aims to explore the role of Al3+ ions concentration on the structural, morphological, compositional and optical properties of ZnS nanoparticles. Direct co-precipitation is employed to synthesize pristine and Al-doped ZnS nanoparticles (Zn1-xAlxS with x = 0 ≤ x ≤ 0.12) using aqueous solutions of Zn(CH3COO)2, Na2S and Al2(SO4)3 in the presence of ethylenediaminetetraacetic acid as a stabilizing agent. The structural analysis showed that Zn1-xAlxS nanoparticles are crystallized in the cubic structure that exhibit preferred orientation along the (111) direction. The different structural parameters are observed to fluctuate with Al incorporation in ZnS but their crystal structure remain unaltered. The surface morphology of Zn1-xAlxS nanoparticles is observed to be densely packed with spherically shaped crystallites which varied with doping. The chemical species and elemental composition of the synthesized nanoparticles are identified by Fourier transform infrared spectroscopy (FT-IR) and energy dispersive X-ray spectroscopy, respectively. UV-visible spectra revealed a blueshift in the absorption edge with increasing concentration of Al in Zn1-xAlxS nanoparticles. The optical band gap values are found greater than that of the bulk value of ZnS which confirms quantum confinement in the synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Hu and W. Zhang (2006) Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Optical Material. 28: 536. https://doi.org/10.1016/j.optmat.2005.03.015

  2. D.R. Jung, J. Kim, C. Nahm, H. Choi, S. Nam, and B. Park, Review paper: semiconductor nanoparticles with surface passivation and surface plasmon Electronic Materials Letters 7, 185 (2011). https://doi.org/10.1007/s13391-011-0902-4.

    Article  CAS  Google Scholar 

  3. T. Edvinsson, Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures Royal Society Open Science 5, 180387 (2018). https://doi.org/10.1098/rsos.180387.

    Article  CAS  Google Scholar 

  4. H.V. Demir and S.V. Gaponenko, Quantum confinement effects in semiconductors in Applied Nanophotonics (Cambridge: Cambridge University Press, 2018), DOI:https://doi.org/10.1017/9781316535868.004

  5. J. Chen, Q. Ma, X.J. Wu, L. Li, J. Liu, and H. Zhang, Wet-chemical synthesis and applications of semiconductor nanomaterial-based epitaxial heterostructures Nano-Micro Letters 11, 86 (2019). https://doi.org/10.1007/s40820-019-0317-6.

    Article  CAS  Google Scholar 

  6. K. Badreddine, I. Kazah, M. Rekaby, and R. Awad, Structural, morphological, optical, and room temperature magnetic characterization on pure and Sm-doped ZnO nanoparticles Journal of Nanomaterial 2018, 1 (2018). https://doi.org/10.1155/2018/7096195.

    Article  CAS  Google Scholar 

  7. C. Chaliha, B.K. Nath, P.K. Verma, and E. Kalita, Synthesis of functionalized Cu:ZnS nanosystems and its antibacterial potential Arabian Journal of Chemistry 12, 515 (2019). https://doi.org/10.1016/j.arabjc.2016.05.002.

    Article  CAS  Google Scholar 

  8. W. Chen, Z. Jin, and A.G. Joly, Optical properties and potential applications of doped semiconductor nanoparticles JJournal of Nanoscience and Nanotechnology 4, 919 (2004). https://doi.org/10.1166/jnn.2004.142.

    Article  CAS  Google Scholar 

  9. J. Theerthagiri, K. Karuppasamy, G. Durai, A.H.S. Rana, P. Arunachalam, K. Sangeetha, P. Kuppusami, and H.S. Kim, Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review Nanomaterials 8, 256 (2018). https://doi.org/10.3390/nano8040256.

    Article  CAS  Google Scholar 

  10. M. Sathishkumar, M. Saroja, and M. Venkatachalam, Influence of (Cu, Al) doping concentration on the structural, optical and antimicrobial activity of ZnS thin films prepared by sol-gel dip coating techniques Optik 182, 774 (2019). https://doi.org/10.1016/j.ijleo.2019.02.014.

    Article  CAS  Google Scholar 

  11. S.I. Sadovnikov, Synthesis, properties and applications of semiconductor nanostructured zinc sulfide Russian Chemical Reviews 88, 571 (2019). https://doi.org/10.1070/RCR4867.

    Article  CAS  Google Scholar 

  12. B. Sotillo, Y. Ortega, P. Fernandez, and J. Piqueras, Influence of indium doping on the morphology of ZnS nanostructures grown by a vapor-solid method CrystEngComm 15, 7080 (2013). https://doi.org/10.1039/c3ce40920a.

    Article  CAS  Google Scholar 

  13. R. Viswanath, H.S.B. Naik, Y.K.G. Somalanaik, P.K.P. Neelanjeneallu, K.N. Harish, and M.C. Prabhakara, Studies on characterization, optical absorption, and photoluminescence of yttrium doped ZnS nanoparticles Journal of Nanotechnology 2014, 924797 (2014). https://doi.org/10.1155/2014/924797.

    Article  CAS  Google Scholar 

  14. D. Sharath, A.P. Gaikwad, S. Choudhury, N. Gupta, R. Sasikala, and C.A. Betty, Effect of indium doping on the photoelectrochemical and photocatalytic properties of zinc sulphide Materials Science and Engineering: B 226, 57 (2017). https://doi.org/10.1016/j.mseb.2017.09.007.

    Article  CAS  Google Scholar 

  15. N. Setoudeh, and N.J. Welham, Metallothermic reduction of zinc sulfide induced by ball milling Journal of Materials Science 52, 6388 (2017). https://doi.org/10.1007/s10853-017-0873-4.

    Article  CAS  Google Scholar 

  16. N. Suganthi, and K. Pushpanathan, Photocatalytic degradation and antimicrobial activity of transition metal doped mesoporous ZnS nanoparticles International journal of environmental science and technology 16, 3375 (2019). https://doi.org/10.1007/s13762-018-1811-y.

    Article  CAS  Google Scholar 

  17. D.M. Sousa, L.C. Alves, A. Marques, G. Gaspar, J.C. Lima, and I. Ferreira, Facile microwave-assisted synthesis manganese doped zinc sulfide nanoparticles Scientific reports 8, 15992 (2018). https://doi.org/10.1038/s41598-018-34268-z.

    Article  CAS  Google Scholar 

  18. M. Wu, Z. Wei, W. Zhao, X. Wang, and J. Jiang, Optical and magnetic properties of Ni doped ZnS diluted magnetic semiconductors synthesized by hydrothermal method Journal of Nanomaterial 2017, 1603450 (2017). https://doi.org/10.1155/2017/1603450.

    Article  CAS  Google Scholar 

  19. M. Aqeel, M. Ikram, A. Asghar, A. Haider, A. Ul-Hamid, M. Naz, M. Imran, and S. Ali, Synthesis of capped Cr-doped ZnS nanoparticles with improved bactericidal and catalytic properties to treat polluted water Applied Nanoscience 10, 2045 (2020). https://doi.org/10.1007/s13204-020-01268-3.

    Article  CAS  Google Scholar 

  20. A. Dhupar, S. Kumar, H.S. Tuli, A.K. Sharma, V. Sharma, and J.K. Sharma, In-doped ZnS nanoparticles: structural, morphological, optical and antibacterial properties Applied Physics A 127, 263 (2021). https://doi.org/10.1007/s00339-021-04425-9.

    Article  CAS  Google Scholar 

  21. T. Hurma, Structural optical and electrical characterization of nanoparticle B doped ZnS films Materials Science Poland 37, 599 (2019). https://doi.org/10.2478/msp-2019-0072.

    Article  CAS  Google Scholar 

  22. M. Kimi, L. Yuliati, and M. Shamsuddin, Preparation of high activity Ga and Cu doped ZnS by hydrothermal method for hydrogen production under visible light irradiation Journal of Nanomaterial 2015, 95024 (2015). https://doi.org/10.1155/2015/195024.

    Article  Google Scholar 

  23. D.A. Reddy, C. Liu, R.P. Vijayalakshmi, and B.K. Reddy, Effect of Al doping on the structural, optical and hotoluminescence properties of ZnS nanoparticles Journal of Alloys Compound 582, 257 (2014). https://doi.org/10.1016/j.jallcom.2013.08.051.

    Article  CAS  Google Scholar 

  24. U.P. Gawai, U.P. Deshpandeb, and B.N. Dole, A study on the synthesis, longitudinal optical phonon-–plasmon coupling and electronic structure of Al doped ZnS nanorods RSC Advance 7, 12382 (2017). https://doi.org/10.1039/C6RA28180J.

    Article  CAS  Google Scholar 

  25. S. Sharma, I. Singh, N. Chitkara, and A. Kapoor, Synthesis and characterization of aluminium doped zinc sulfide nanoparticles Materials Research Express 4, 075046 (2017). https://doi.org/10.1088/2053-1591/aa7e8f.

    Article  CAS  Google Scholar 

  26. K.V. Anand, Improved, structural, optical and photoluminescence properties of EDTA capped zinc sulphide nanoparticles for optoelectronic applications Journal of Cluster Science (2020). https://doi.org/10.1007/s10876-020-01772-0.

    Article  Google Scholar 

  27. C.S. Pathak, D.D. Mishra, V. Agarwal, and M.K. Mandal, Optical properties of ZnS nanoparticles prepared by high energy ball milling Materials science in semiconductor processing 16, 525 (2013). https://doi.org/10.1016/j.mssp.2012.10.005.

    Article  CAS  Google Scholar 

  28. P. Bindu, and S. Thomas, Estimation of lattice strain in ZnO nanoparticles: x-ray peak profile analysis Journal of Theoretical and Applied Physics 8, 123 (2014). https://doi.org/10.1007/s40094-014-0141-9.

    Article  Google Scholar 

  29. R. Javed, M. Zia, S. Naz, S.O. Aisida, N. ul Ain, Q. Ao, Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology 18, 172 (2020). DOI:https://doi.org/10.1186/s12951-020-00704-4

  30. J. Gonzalez-Estrella, G. Li, S.E. Neely, D. Puyol, R. Sierra-Alvarez, and J.A. Field, Elemental copper nanoparticle toxicity to anaerobic ammonium oxidation and the influence of ethylene diamine-tetra acetic acid (EDTA) on copper toxicity Chemosphere 184, 730 (2017). https://doi.org/10.1016/j.chemosphere.2017.06.054.

    Article  CAS  Google Scholar 

  31. A. Dhupar, S. Kumar, V. Sharma, and J.K. Sharma, Mixed structure Zn(S, O) nanoparticles: synthesis and characterization Materials Science Poland 37, 230 (2019). https://doi.org/10.2478/msp-2019-0024.

    Article  CAS  Google Scholar 

  32. J. Schmelzer, Nucleation theory and applications. Wiley-VCH Verlag GmbH & Co. KGaA 76 (2005)

  33. K. Nagamani, N. Revathi, P. Prathap, Y. Lingappa, K. T Ramakrishna Reddy, Al-doped ZnS layers synthesized by solution growth method. Current Applied Physics 12, 2 (2012) DOI:https://doi.org/10.1016/j.cap.2011.07.031

  34. R.W.G. Wyckoff, Crystal Structures 1, 2nd edn. Cubic closest packed, ccp, amcsd database code 0011136 (Interscience Publishers, New York, 1963).

  35. D.A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, and B. Sreedhar, Effect of Cr doping on the structural and optical properties of ZnS nanoparticles Crystal Research and Technology 46, 731 (2011). https://doi.org/10.1002/crat.201100146.

    Article  CAS  Google Scholar 

  36. A. Umar, M.A. Khan, R. Kumar, and H. Algarni, Ag-doped ZnO nanoparticles for enhanced ethanol gas sensing application Journal of nanoscience and nanotechnology 18, 3557 (2018). https://doi.org/10.1166/jnn.2018.14651.

    Article  CAS  Google Scholar 

  37. W.L. Liu, and Y.F. Zhang, Blueshift of absorption edge and photoluminescence in Al doped ZnO thin films Integrated Ferroelectrics 188, 112 (2018). https://doi.org/10.1080/10584587.2018.1454222.

    Article  CAS  Google Scholar 

  38. A.K. De, S. Majumdar, S. Pal, S. Kumar, and I. Sinha, Zn doping induced band gap widening of Ag2O nanoparticles Journal of Alloys and Compounds 832, 154127 (2020). https://doi.org/10.1016/j.jallcom.2020.154127.

    Article  CAS  Google Scholar 

  39. K. Manzoor, S. Johny, D. Thomas, S. Setua, D. Menon, and S. Nair, Bio-conjugated luminescent quantum dots of doped {ZnS}: A cyto-friendly system for targeted cancer imaging Nanotechnology 20, 065102 (2009). https://doi.org/10.1088/0957-4484/20/6/065102.

    Article  CAS  Google Scholar 

  40. S. Kumar, P. Sharma, and V. Sharma, Redshift in absorption edge of Cd1−xCoxS nanofilms IEEE Trans. Nanotechnol. 13, 343 (2014). https://doi.org/10.1109/TNANO.2014.2303200.

    Article  CAS  Google Scholar 

  41. D.C. Onwudiwe, and P.A. Ajibade, ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors International Journal of Molecular Sciences 12, 5538 (2011). https://doi.org/10.3390/ijms12095538.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the SAIF, PU–Chandigarh for providing XRD, FT-IR and UV-visible spectroscopy and PU–Chandigarh for FE-SEM and EDX instrumentation facilities. Moreover, all authors thanks MMDU–Mullana for providing adequate research facility and support to carried out the present work.

Funding

Nil

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhupar, A., Sharma, V., Kumar, S. et al. Role of Aluminium Concentration on the Structural, Morphological, and Optical Properties of ZnS Nanoparticles. J. Electron. Mater. 50, 7174–7187 (2021). https://doi.org/10.1007/s11664-021-09252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09252-5

Keywords

Navigation