Skip to main content
Log in

Mechanical Properties, Elastic Moduli, and Gamma Radiation Shielding Properties of Some Zinc Sodium Tetraborate Glasses: A Closer Look at ZnO/CaO Substitution

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, five different zinc sodium tetraborate glasses based on nominal composition of xCaO-(40-x) ZnO-59Na2B4O7-1CuO were investigated in terms of their extensive mechanical and ionizing radiation resistance properties. Mathematical methodologies and sophisticated modeling techniques were included in the study. The development in elastic moduli parameters (bulk, Young’s, shear, and longitudinal) and Poisson’s ratio of the heavier CaO content of the CZNBC glasses were confirmed via Makishima-Mackenzie (M-M) and bond compression (B-C) models. The B-C bulk elastic (KB-C) modulus was found to increase from 112.22 to 120.40 GPa, while the M-M bulk (KM-M) modulus increased from 15.73 to 22.83 GPa for CZNBC-0 (glass sample free with CaO) and CZNBC-40 (glass sample rich with CaO), respectively. On the other hand, our findings showed that gamma radiation shielding properties decreased with increasing CaO contribution in the glass structure. Consequently, a direct relationship was observed between the changing trends of mechanical and gamma ray shielding properties. It can be concluded that increasing CaO may be beneficial for improving the mechanical characteristics of zinc sodium tetraborate glasses, while decreasing ZnO/CaO may result in a reduction in gamma ray shielding capabilities.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.B. Mallur, T. Czarnecki, A. Adhikari, and P.K. Babu, Mater. Res. Bull. 68, 27–34 (2015). https://doi.org/10.1016/j.materresbull.2015.03.033

    Article  CAS  Google Scholar 

  2. A. Górny, M. Kuwik, W. Pisarski, and J. Pisarska, Materials. 13, 5022 (2020). https://doi.org/10.3390/ma13215022

    Article  CAS  Google Scholar 

  3. S. Ruengsri, Sci. Technol. Nucl. Installations 2014, 218041 (2014). https://doi.org/10.1155/2014/218041

    Article  CAS  Google Scholar 

  4. V. Kundu, R. Dhiman, A. Maan, and D. Goyal, Adv. Condensed Matter Phys. 2008, 937054 (2008). https://doi.org/10.1155/2008/937054

    Article  CAS  Google Scholar 

  5. G. Sangeetha, K. Sekhar, A. Hameed, G. Ramadevudu, M. Narasimha Chary, and M. Shareefuddin, J. Non-Cryst. Solids 563, 120784 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120784

    Article  CAS  Google Scholar 

  6. S.A.M. Issa, H.O. Tekin, T.T. Erguzel, and G. Susoy, Appl. Phys. A 125, 640 (2019). https://doi.org/10.1007/s00339-019-2941-x

    Article  CAS  Google Scholar 

  7. S.A.M. Issa, and H.O. Tekin, Ceram. Int. 45, 23561–23571 (2019). https://doi.org/10.1016/j.ceramint.2019.08.065

    Article  CAS  Google Scholar 

  8. Health Problems Caused by Lead, NIOSH, CDC. Retrieved 31 March 2021

  9. H.A.R. El-Batal, and F.M. Ezz-El-Din, J. Am. Ceram. Soc. 76, 523 (1993).

    Article  CAS  Google Scholar 

  10. B. Karthikeyan, and S. Mohan, Physica B 334, 298 (2003).

    Article  CAS  Google Scholar 

  11. G. Sharma, K. Singh, S. Mohan, H. Singh, and S. Bindra, Radiat. Phys. Chem. 75, 959 (2006).

    Article  CAS  Google Scholar 

  12. E. Ilik, G. Kilic, and U.G. Issever, J. Mater. Sci.: Mater. Electron. 31, 8986 (2020).

    CAS  Google Scholar 

  13. G. Kilic, E. Ilik, U.G. Issever, and M. Peker, Appl. Phys. A 126, 1 (2020).

    Article  Google Scholar 

  14. G. Kilic, E. Ilik, K.A. Mahmoud, R. El-Mallawany, F.I. El-Agawany, and Y.S. Rammah, Ceram. Int. 46, 19318 (2020).

    Article  CAS  Google Scholar 

  15. S. Ozturk, E. Ilik, G. Kilic, and U.G. Issever, Appl. Phys. A 126, 1 (2020).

    Article  Google Scholar 

  16. C.R. Bamford, Colour Generation and Control in Glass (Amsterdam: Elsevier Science Publisher, 1977).

    Google Scholar 

  17. N.F. Mott, Conduction in glasses containing transition metal ions J. Non-Cryst. Solids 1, 1 (1968).

    Article  CAS  Google Scholar 

  18. S. CetinkayaColak, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 58, 41 (2017).

    Google Scholar 

  19. H. Liu, T. Chin, and S. Yung, Mater. Chem. Phys. 50, 1 (1997).

    Article  CAS  Google Scholar 

  20. M. Azooz, and H. ElBatal, Mater. Chem. Phys. 240, 122129 (2020).

    Article  CAS  Google Scholar 

  21. H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, J. Non-Cryst. Solids 151, 134 (1992).

    Article  Google Scholar 

  22. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, Opt. Express 13, 6892 (2005).

    Article  CAS  Google Scholar 

  23. J.-H. Bae, J.-M. Cha, D.-S. Kim, Y.-S. Kim, B.-K. Ryu, J.-H. Bae, J.-M. Cha, D.-S. Kim, Y.-S. Kim, and B.-K. Ryu, Structure and Antibacterial Property of ZnO-B2O3-P2O5 Glasses J. Korean Ceram. Soc. 55, 135 (2018).

    Article  CAS  Google Scholar 

  24. A. Duran, J. Jurado, and J.F. Navarro, J. Non-Cryst. Solids. 79, 333 (1986).

    Article  CAS  Google Scholar 

  25. E. Metwalli, J. Non-Cryst. Solids 317, 221 (2003).

    Article  CAS  Google Scholar 

  26. F.H. ElBatal, S.Y. Marzouk, N. Nada, and S.M. Desouky, Physica B 391, 88 (2007).

    Article  CAS  Google Scholar 

  27. N.A. Ghoneim, H.A. ElBatal, A.M. Abdelghany, and I.S. Ali, J. Alloy. Compd. 509, 6913 (2011).

    Article  CAS  Google Scholar 

  28. S. CetinkayaColak, Physica B: Condensed Matter. 550, 354 (2018).

    Article  CAS  Google Scholar 

  29. H. Doweidar, G. El-Damrawi, and M. Al-Zaibani, J .Vib. Spectrosc. 68, 91 (2013).

    Article  CAS  Google Scholar 

  30. K.V. Shah, M. Goswami, D.K. Aswal, V.K. Shrikhande, S.K. Gupta, and G.P. Kothiyal, J. Therm. Anal. Calorim. 89, 153 (2007).

    Article  CAS  Google Scholar 

  31. G. Sangeetha, K. Chandra Sekhar, A. Hameed, G.A. Ramadevudu, M.N. Chary, and M.D. Shareefuddin, J. Non-Cryst. Solids 563, 120784 (2021).

    Article  CAS  Google Scholar 

  32. A.M.A. Mostafa, H.M. Zakaly, S.A. Al-Ghamdi, S.A. Issa, M. Al-Zaibani, R.M. Ramadan, and E.F. El Agammy, Mater. Chem. Phys. 258, 123937 (2021).

    Article  CAS  Google Scholar 

  33. S.A.M. Issa, H.M.H. Zakaly, M. Pyshkina, M.Y.A. Mostafa, M. Rashad, and T.S. Soliman, Radiat. Phys. Chem. 180, 109281 (2020).

    Article  Google Scholar 

  34. H.O. Tekin, M.I. Sayyed, E.E. Altunsoy, and T. Manici, Dig. J. Nanomater. Biostruct. 12, 861 (2017).

    Google Scholar 

  35. H.O. Tekin, V.P. Singh, and T. Manici, Appl. Radiat. Isot. 12, 122–125 (2017).

    Article  Google Scholar 

  36. A.M. Ali, S.A.M. Issa, M.R. Ahmed, Y.B. Saddeek, M.H.M. Zaid, M. Sayed, H.H. Somaily, H.O. Tekin, H.A.A. Sidek, K.A. Matori, and H.M.H. Zakaly, J. Mater. Res. Technol. 9, 13956 (2020).

    Article  CAS  Google Scholar 

  37. A.M.A. Henaish, M. Mostafa, B.I. Salem, H.M.H. Zakaly, S.A.M. Issa, I.A. Weinstein, and O.M. Hemeda, J. Mater. Sci.: Mater. Electron. 22, 1–13 (2020).

    Google Scholar 

  38. K.S. Mann, and S.S. Mann, Annal. Nuclear Energy 150, 107845 (2021). https://doi.org/10.1016/j.anucene.2020.107845.

    Article  CAS  Google Scholar 

  39. Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, R. El-Mallawany, E. Ilik, and G. Kilic, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03440-5.

    Article  Google Scholar 

  40. I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E.-S. Yousef, and Y.S. Rammah, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.093.

    Article  Google Scholar 

  41. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, A. Gamal, and El.S. Yousef, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.07.014.

    Article  Google Scholar 

  42. N. Elkhoshkhany, E. Syala, and E. Yousef, Results Phys. 16, 102876 (2020).

    Article  Google Scholar 

  43. RSICC Computer Code Collection, MCNPX User’s Manual Version 2.4.0. MonteCarlo N-Particle Transport Code System for Multiple and High Energy Applications, 2002

  44. D. Şen Baykal, H. Tekin, and R. ÇakırlıMutlu, Int. J. Comput. Exp. Sci. Eng. 7, 99 (2021). https://doi.org/10.22399/ijcesen.960151.

    Article  Google Scholar 

  45. I. Akkurt, and H.O. Tekin, Emerg Mater. Res. 9, 1020 (2020). https://doi.org/10.1680/jemmr.20.00209.

    Article  Google Scholar 

  46. H.O. Tekin, S.A.M. Issa, K.A. Mahmoud, F.I. El-Agawany, Y.S. Rammah, G. Susoy, M.S. Al-Buriahi, M.M. Abuzaid, and I. Akkurt, Emerg. Mater. Res. 9, 1131 (2020). https://doi.org/10.1680/jemmr.20.00185.

    Article  Google Scholar 

  47. F.I. El-Agawany, K.A.-A. Mahmoud, H. Akyildirim, E.-S. Yousef, H.O. Tekin, and Y.S. Rammah, Emerg. Mater. Res. 10, 227 (2021). https://doi.org/10.1680/jemmr.20.00297.

    Article  Google Scholar 

  48. H.O. GhadaALMisned, E.K. Tekin, G. Bilal, S.A.M. Issa, H.M.H. Zakaly, and A. Ene, Appl. Sci. 11, 15 (2021). https://doi.org/10.3390/app11156837.

    Article  CAS  Google Scholar 

  49. H.O. GhadaALMisned, S.A.M. Tekin, M.Ç. Issa, A.E. Ersundu, G.K. Ersundu, H.M.H. Zakaly, and A. Ene, Materials 14, 4330 (2021). https://doi.org/10.3390/ma14154330.

    Article  CAS  Google Scholar 

  50. H.O. Tekin, G. Bilal, H.M.H. Zakaly, G. Kilic, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, and A. Ene, Materials. 14, 3897 (2021). https://doi.org/10.3390/ma14143897.

    Article  CAS  Google Scholar 

  51. G. Kilic, E. Ilik, S.A.M. Issa, and H.O. Tekin, J. Alloys Comp. 877, 160302 (2021). https://doi.org/10.1016/j.jallcom.2021.160302.

    Article  CAS  Google Scholar 

  52. G. Kilic, E. Ilik, S.A.M. Issa, B. Issa, U.G. Issever, H.M.H. Zakaly, and H.O. Tekin, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.06.152.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Tekin.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests on their own.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ALMisned, G., Bilal, G., Rammah, Y. et al. Mechanical Properties, Elastic Moduli, and Gamma Radiation Shielding Properties of Some Zinc Sodium Tetraborate Glasses: A Closer Look at ZnO/CaO Substitution. J. Electron. Mater. 50, 6844–6853 (2021). https://doi.org/10.1007/s11664-021-09246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09246-3

Keywords

Navigation