Skip to main content

Advertisement

Log in

A Triboelectric Nanogenerator Based on MgSiO3 Powder for a Human Motion Counter

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In recent years, triboelectric nanogenerators (TENGs) have developed rapidly and attracted the attention of researchers all over the world. Here, a novel waved-shaped triboelectric nanogenerator using the MgSiO3 powder (W-TENG) was developed. In this work, polyethylene terephthalate film and MgSiO3 powder form the triboelectric pairs. W-TENG devices can convert mechanical energy into electric energy. From the results, the maximum output power of a W-TENG can reach 184 µW. Additionally, a W-TENG can generate an open-circuit voltage (Voc) of 224.26 V, a short-circuit current (Isc) of 2.74 µA, and a transferred charge of 37.8 nC. Moreover, a W-TENG can serve as a self-powered human motion counter. This design describes a portable TENG device that can promote the self-powered human motion sensor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. S. Bairagi, and S.W. Ali, Org. Electron. 78, 105547 (2020).

    Article  CAS  Google Scholar 

  2. E.A. Bakar, M.A. Mohamed, P.C. Ooi et al., Org. Electron. 61, 289 (2018).

    Article  Google Scholar 

  3. T. Cheng, Q. Gao, and Z.L. Wang, Adv. Mater. Technol. 4, 1800588 (2019).

    Article  Google Scholar 

  4. Z.L. Wang, Adv. Energy Mater. 10, 2000137 (2020).

    Article  CAS  Google Scholar 

  5. R. Lei, Y. Shi, Y. Ding et al., Energy Environ. Sci. 13, 2178 (2020).

    Article  CAS  Google Scholar 

  6. N.A. Khoso, A. Ahmed, H. Deb et al., Org. Electron. 75, 105368 (2019).

    Article  CAS  Google Scholar 

  7. A. Šutka, M. Timusk, J. Metsik et al., Org. Electron. 51, 446 (2017).

    Article  Google Scholar 

  8. T. Jiang, H. Pang, J. An et al., Adv. Energy Mater. 10, 2000064 (2020).

    Article  CAS  Google Scholar 

  9. C. Wu, A.C. Wang, W. Ding et al., Adv. Energy Mater. 9, 1802906 (2019).

    Article  Google Scholar 

  10. D. Liu, X. Yin, H. Guo et al., Sci. Adv. 5, eaav6437 (2019).

    Article  CAS  Google Scholar 

  11. W. He, W. Liu, J. Chen et al., Nat. Commun. 11, 1 (2020).

    Article  Google Scholar 

  12. Z.L. Wang, T. Jiang, and L. Xu, Nano Energy 39, 9 (2017).

    Article  Google Scholar 

  13. K. Parida, J. Xiong, X. Zhou et al., Nano Energy 59, 237 (2019).

    Article  CAS  Google Scholar 

  14. Y. Chen, Y. Cheng, Y. Jie et al., Energy Environ. Sci. 12, 2678 (2019).

    Article  Google Scholar 

  15. B. Zhang, Y. Tang, R. Dai et al., Nano Energy 64, 103953 (2019).

    Article  CAS  Google Scholar 

  16. X. Pu, H. Guo, J. Chen et al., Sci. Adv. 3, 1700694 (2017).

    Article  Google Scholar 

  17. C. Chen, H. Guo, L. Chen et al., ACS Nano 14, 4585 (2020).

    Article  CAS  Google Scholar 

  18. S. Nie, Q. Fu, X. Lin et al., Chem. Eng. J. 404, 126512 (2021).

    Article  CAS  Google Scholar 

  19. Y. Jie, X. Jia, J. Zou et al., Adv. Energy Mater. 8, 1703133 (2018).

    Article  Google Scholar 

  20. F. Yi, Z. Zhang, Z. Kang et al., Adv. Func. Mater. 29, 1808849 (2019).

    Article  CAS  Google Scholar 

  21. X. Xie, X. Chen, C. Zhao, et al. Intermediate layer for enhanced triboelectric nanogenerator. Nano Energy, 2020: 105439.

  22. Z. Lin, B. Zhang, H. Guo et al., Nano Energy 64, 103908 (2019).

    Article  CAS  Google Scholar 

  23. C. Zhang, X. Lin, N. Zhang et al., Nano Energy 66, 104126 (2019).

    Article  CAS  Google Scholar 

  24. J. Wan, H. Wang, L. Miao et al., Nano Energy 74, 104878 (2020).

    Article  CAS  Google Scholar 

  25. B. Zhang, Y. Tang, R. Dai et al., Nano Energy 64, 103953 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Zhao.

Ethics declarations

Conflict of interest

The author report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 469 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S. A Triboelectric Nanogenerator Based on MgSiO3 Powder for a Human Motion Counter. J. Electron. Mater. 50, 6836–6843 (2021). https://doi.org/10.1007/s11664-021-09245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09245-4

Keywords

Navigation