Skip to main content
Log in

Effect of Ag Additives on the Consumption of a Cathode Cu Pad in a Cu/Sn3.5Ag/Cu Flip-Chip Structure Under Electromigration

  • Electronic Packaging and Interconnections 2021
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present work investigated the effect of Ag additives on the consumption of cathode Cu pad under electromigration in a current-stressed Cu/Sn3.5Ag/Cu flip-chip structure. The consumption rate of a cathode Cu pad in a pure Sn system is faster than that of a cathode Cu pad in a Sn3.5Ag system at 80℃ by a factor of 10. Using the kinetics of the consumption equation, the activation energy in the consumption of a cathode Cu pad was calculated. The activation energy (0.65 eV) of the consumption of a cathode Cu pad in a Cu/Sn3.5Ag/Cu flip-chip structure under electromigration (EM) is slightly greater than that (0.62 eV) of the consumption of a cathode Cu pad in a Cu/Sn/Cu flip-chip structure under EM. The dissolution of Cu flux is discussed, and the possible effect of Ag additives on the consumption rate of a cathode Cu pad under EM is proposed. The Ag additives reduced the deficiency of Cu solubility in a solder matrix near the cathode Cu/solder interface, which is the main factor in the reduction of Cu pad consumption. Moreover, the Ag3Sn phase forming on the cathode Cu6Sn5 interface protects Cu6Sn5 from dissolving into the Sn3.5Ag solder matrix under EM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.N. Tu, Microelectron. Reliab. 51, 517 (2011).

    Article  CAS  Google Scholar 

  2. C.T. Ko, and K.N. Chen, Microelectron. Reliab. 50, 481 (2010).

    Article  CAS  Google Scholar 

  3. Y. Liu, L. Liang, S. Irving, and T. Luk, Microelectron. Reliab. 48, 811 (2008).

    Article  Google Scholar 

  4. F. He, and C.M. Tan, Microelectron. Reliab. 50, 376 (2010).

    Article  CAS  Google Scholar 

  5. X. Long, W. B. Tang, and C. G. Huang, Mechanical Behavior of Lead-Free Solder Micro-Joints Under Electrical Conditions, in 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA) IEEE, 1 (2019).

  6. C.M. Gourlay, S.A. Belyakov, Z.L. Ma, and J.W. Xian, JOM 67, 2383 (2015).

    Article  CAS  Google Scholar 

  7. L. Su, X. Yu, K. Li, and M. Pecht, Microelectron. Reliab. 110, 113657 (2020).

    Article  Google Scholar 

  8. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    Article  CAS  Google Scholar 

  9. Y.W. Lin, J.H. Ke, H.Y. Chuang, Y.S. Lai, and C.R. Kao, Int. J. Appl. Phys. 107, 073516 (2010).

    Article  Google Scholar 

  10. S.S. Ha, J.W. Kim, J.W. Yoon, S.O. Ha, and S.B. Jung, J. Electron. Mater. 38, 70 (2009).

    Article  CAS  Google Scholar 

  11. K. Beers, A.E. Hollowell, and G.B. Basim, MRS Adv. 5, 1929 (2020).

    Article  CAS  Google Scholar 

  12. Z. Zheng, P.C. Chiang, Y.T. Huang, W.T. Wang, P.C. Li, Y.H. Tsai, and S.P. Feng, Microelectron. Reliab. 99, 44 (2019).

    Article  CAS  Google Scholar 

  13. H. Ma, A. Kunwar, R. Huang, J. Chen, Y. Wang, N. Zhao, and H. Ma, Intermetallics 90, 90 (2017).

    Article  CAS  Google Scholar 

  14. V. Usov, C.Ó. Coileáin, A.N. Chaika, S.I. Bozhko, V.N. Semenov, S. Krasnikov, and I.V. Shvets, Phys. Rev. B 102, 035407 (2020).

    Article  CAS  Google Scholar 

  15. J.W. Nah, J.O. Suh, K.N. Tu, S.W. Yoon, V.S. Rao, V. Kripesh, and F. Hua, Int. J. Appl. Phys. 100, 123513 (2006).

    Article  Google Scholar 

  16. C.Y. Liu, L. Ke, Y.C. Chuang, and S.J. Wang, Int. J. Appl. Phys. 100, 083702 (2006).

    Article  Google Scholar 

  17. H.W. Tseng, C.T. Lu, Y.H. Hsiao, P.L. Liao, Y.C. Chuang, T.Y. Chung, and C.Y. Liu, Microelectron. Reliab. 50, 1159 (2010).

    Article  CAS  Google Scholar 

  18. E.J. Lin, Y.K. Tang, Y.C. Hsu, H.W. Tseng, and C.Y. Liu, Int. J. Appl. Phys. 122, 095702 (2017).

    Article  Google Scholar 

  19. H.A. Le, N.C. Tso, T.A. Rost, and C.U. Kim, Appl. Phys. Lett. 72, 2814 (1998).

    Article  CAS  Google Scholar 

  20. J.Y. Wang, Y.X. Lin, C.Y. Yeh, C.Y. Chiu, E.J. Lin, C.Y. Wu, and C.Y. Liu, J. Mater. Sci.: Mater. Electron. 32, 567 (2021).

    CAS  Google Scholar 

  21. J.Y. Wang, Y.K. Tang, C.Y. Yeh, P.J. Chang, Y.X. Lin, E.J. Lin, C.Y. Wu, W.X. Zhuang, and C.Y. Liu, J. Alloys Compd. 797, 684 (2019).

    Article  CAS  Google Scholar 

  22. W.N. Hsu, and F.Y. Ouyang, Mater. Chem. Phys. 165, 66 (2015).

    Article  CAS  Google Scholar 

  23. T.L. Yang, J.J. Yu, W.L. Shih, C.H. Hsueh, and C.R. Kao, J. Alloys Compd. 605, 193 (2014).

    Article  CAS  Google Scholar 

  24. M. Huang, O. G. Yeow, C. Y. Poo, and T. Jiang, A study on copper pillar interconnect in flip-chip-on-module packaging, in 9th Electronics Packaging Technology Conference IEEE, 325 (2007).

  25. L.M. Lee, and A.A. Mohamad, Adv. Mater. Sci. Eng. 2013, 1 (2013).

    Google Scholar 

  26. A.A. El-Daly, H. El-Hosainy, T.A. Elmosalami, and W.M. Desoky, J. Alloys Compd. 653, 402 (2015).

    Article  CAS  Google Scholar 

  27. B. Arfaei, and E. Cotts, J. Electron. Mater. 38, 2617 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the program MOST 109-2218-E-008-004, MOST 108-2221-E-008-045-MY3, and MOST 107-2221-E-008-042-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y.X., Wang, J.Y., Chen, C.Y. et al. Effect of Ag Additives on the Consumption of a Cathode Cu Pad in a Cu/Sn3.5Ag/Cu Flip-Chip Structure Under Electromigration. J. Electron. Mater. 50, 6584–6589 (2021). https://doi.org/10.1007/s11664-021-09234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09234-7

Keywords

Navigation