Skip to main content

Advertisement

Log in

Flexible Piezoelectric MoS2/P(VDF-TrFE) Nanocomposite Film for Vibration Energy Harvesting

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Molybdenum disulfide (MoS2) material is mainly used in various electronic applications and in the solar energy harvesting process. In this work, MoS2 nanoparticles are used for piezoelectric vibration energy harvesting applications. MoS2 nanoparticles are synthesized by a hydrothermal process. The synthesized nano-MoS2 is inserted into polyvinylidene fluoride-trifluoroethylene P(VDF-TrFE) to form the MoS2/P(VDF-TrFE) nanocomposite. Through the presence of nano-MoS2 particles in the polymer chain and elemental molecular binding energy, phase transformation is confirmed by scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS), x-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR), respectively. MoS2 nanoparticles in a polymer composite enhance the dielectric behaviour three times higher than that of the pure P(VDF-TrFE) as measured by an impedance analyzer. The four types of energy harvesting devices are fabricated based on the substrate effect like P(VDF-TrFE) without substrate, P(VDF-TrFE) with PET substrate, MoS2/P(VDF-TrFE) without substrate and MoS2/P(VDF-TrFE) with PET substrate and this devices natural resonance frequency, output voltage performance are analyzed by using LDV and shaker. MoS2/P(VDFTrFE) with PET substrate piezoelectric cantilever harvests more AC output voltage 2.96 V in the size of 1 cm * 0.5 cm length and width, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Priya, and D. Inman, Energy harvesting technologies, 2nd ed. (New York: Springer, 2008).

    Google Scholar 

  2. A. Eruturk, and D.J. Inmam, Piezo electric energy harvesting (Hoboken: Wiley, 2011).

    Book  Google Scholar 

  3. J.S. Harrison and Z. Ounaies, Piezoelectric polymers. In: ICASE, National Aeronautics and Space Administration (Langley Research Center Hampton, Virginia, 2001), pp 1–32. https://ntrs.nasa.gov/api/citations/20020044745/downloads/20020044745.pdf

  4. C. Baur, D.J. Apo and S. Priya, Advances in piezoelectric polymer composites for vibrational energy harvesting. In: Polymer Composites for Energy Harvesting, Conversion, and Storage, ACS Symposium Series, Chaper 1 (American Chemical Society, Washington, DC, 2014), pp. 1–27. https://doi.org/10.1021/bk-2014-1161

  5. B. Gnade and M. Quevedo-Lopez, Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer, ferroelectrics—physical effects, (2011), book Chapter 4, pp 77–99, ISBN:978-953-307-453-5. https://doi.org/10.5772/17147.

  6. T. Kajihara, Y. Ueno, and Y. Tsujiura, Jpn. J. Appl. Phys. 56, 4S (2017). https://doi.org/10.7567/JJAP.56.04CL04.

    Article  Google Scholar 

  7. D.M. Marquis, É. Guillaume, and C. Chivas-Joly, Properties of nanofillers in polymer. In: Nanocomposite and Polymer with Analytical Methods, Chapter 11 (John Cuppoletti, Intech Open, 2011). pp 262–284. https://doi.org/10.5772/21694.

  8. D. Singh, A. Choudhary, and A. Garg, ACS Appl. Mater. Interfaces. 10, 3 (2018). https://doi.org/10.1021/acsami.7b16973.

    Article  CAS  Google Scholar 

  9. H. Zhu, Y. Wang, and J. Xiao, Nat Nanotechnol 10, 151 (2015). https://doi.org/10.1038/nnano.2014.309.

    Article  CAS  Google Scholar 

  10. N.J. Dimple and S.D. Behere, J. Phys. Chem. C 121, 17 (2017). https://doi.org/10.1021/acs.jpcc.7b01970.

    Article  CAS  Google Scholar 

  11. J. Sun, X. Li, and W. Guo, Curr. Comput. Aided Drug Des. 7, 198 (2017). https://doi.org/10.3390/cryst7070198.

    Article  CAS  Google Scholar 

  12. X. Yumei Tian, L.S. Zhao, F. Meng, and L. Tang, Mater. Lett. 60, 4 (2006). https://doi.org/10.1016/j.matlet.2005.09.029.

    Article  CAS  Google Scholar 

  13. W. Zhang, P. Zhang, and S. Zhiqiang, Nanoscale 44, 7 (2015). https://doi.org/10.1039/C5NR06121K.

    Article  CAS  Google Scholar 

  14. A. Steinhoff, M. Rosner, and F. Jahnke, Nano Lett. 14, 7 (2014). https://doi.org/10.1021/nl500595u.

    Article  CAS  Google Scholar 

  15. W. Wu, L. Wang, Y. Li, and F. Zhang, Nature 514, 470 (2014). https://doi.org/10.1038/nature13792.

    Article  CAS  Google Scholar 

  16. X.-W. Zhang, D. Xie, Xu. Jian-Long, Y.-L. Sun, and X. Li, IEEE Electron Device Lett. 36, 8 (2015). https://doi.org/10.1109/LED.2015.2440249.

    Article  CAS  Google Scholar 

  17. X. Li and H. Zhu, J. Materiomics 1, 1 (2015). https://doi.org/10.1016/j.jmat.2015.03.003.

    Article  CAS  Google Scholar 

  18. T. Wua, Y. Songa, and Z. Shia, Nano Energy 80, 105541 (2021). https://doi.org/10.1016/j.nanoen.2020.105541.

    Article  CAS  Google Scholar 

  19. D. Zhanga, Z. Yanga, and P. Lib, Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974.

    Article  CAS  Google Scholar 

  20. Wu. Chaoxing, ACS Nano 11, 8 (2017). https://doi.org/10.1021/acsnano.7b03657.

    Article  CAS  Google Scholar 

  21. C. Jiang, Q. Li, and J. Huang, ACS Appl. Mater. Interfaces 12, 37 (2020). https://doi.org/10.1021/acsami.0c11913.

    Article  CAS  Google Scholar 

  22. A. Almusallam and Z. Luo, Nano Energy 33, 146 (2017). https://doi.org/10.1016/j.nanoen.2017.01.037.

    Article  CAS  Google Scholar 

  23. S.V. Prabhakar Vattikuti and C. Byon, J. Nano Mater. 201, 710462 (2015). https://doi.org/10.1155/2015/710462.

    Article  CAS  Google Scholar 

  24. G. Tang, J. Sun, and C. Wei, Mater. Lett. 86, 1 (2012). https://doi.org/10.1016/j.matlet.2012.07.014.

    Article  CAS  Google Scholar 

  25. Y.-H. Lee, X.-Q. Zhang, and W. Zhang, Adv. Mater. 24, 17 (2012). https://doi.org/10.1002/adma.201104798.

    Article  CAS  Google Scholar 

  26. J. Iranmahboob, D.O. Hill, and H. Toghiani, Appl. Surfaces Sci. 185, 72 (2001). https://doi.org/10.1016/S0169-4332(01)00653-5.

    Article  CAS  Google Scholar 

  27. L. Luo, M. Shi, and S. Zhao, J. Saudi Chem. Soc. 23, 6 (2019). https://doi.org/10.1016/j.jscs.2019.01.005.

    Article  CAS  Google Scholar 

  28. P. Dwivedi, S. Das, and S. Dhanekar, ACS Appl. Mater. Interfaces 9, 24 (2017). https://doi.org/10.1021/acsami.7b05468.

    Article  CAS  Google Scholar 

  29. L. Zhao, J. Jia, Z. Yang, and J. Yu, Appl. Catal. B Environ. 210, 290 (2017). https://doi.org/10.1016/j.apcatb.2017.04.003.

    Article  CAS  Google Scholar 

  30. S. Kim, I. Towfeeq, and Y. Dong, Appl. Sci. 8, 213 (2018). https://doi.org/10.3390/app8020213.

    Article  CAS  Google Scholar 

  31. J. Han, D. Li, and C. Zhao, Sensors 19, 830 (2019). https://doi.org/10.3390/s19040830.

    Article  CAS  Google Scholar 

  32. N. Maity, J. Mater. Chem. C 5, 46 (2017). https://doi.org/10.1039/C7TC03593D.

    Article  Google Scholar 

  33. J. Arunguvai and P. Lakshmi, J. Mater. Sci. Mater. Electron. 31, 8283 (2020). https://doi.org/10.1007/s10854-020-03363-1.

    Article  CAS  Google Scholar 

  34. J.-H. Lee, Adv. Mater. 26, 5 (2014). https://doi.org/10.1007/s10854-020-03363-1.

    Article  CAS  Google Scholar 

  35. S.A. Han, T.-H. Kim, and S.K. Kim, Adv. Mater. 30, 21 (2018). https://doi.org/10.1002/adma.201800342.

    Article  CAS  Google Scholar 

  36. S.K. Kim, R. Bhatia, and T.-H. Kim, Nano Energy 22, 483 (2016). https://doi.org/10.1016/j.nanoen.2016.02.046.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All the material characterization measurements reported in this work were carried out in the Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Arunguvai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunguvai, J., Lakshmi, P. Flexible Piezoelectric MoS2/P(VDF-TrFE) Nanocomposite Film for Vibration Energy Harvesting. J. Electron. Mater. 50, 6870–6880 (2021). https://doi.org/10.1007/s11664-021-09204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09204-z

Keywords

Navigation