Skip to main content
Log in

Synergistic Effect of NiO and Spiro-OMeTAD for Hole Transfer in Perovskite Solar Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

2,2′,7,7′-Tetrakis (N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-OMeTAD), as a hole transporting layer (HTL), has been widely used in perovskite solar cells (PSCs), and adding lithium bis[(trifluoromethyl)sulfonyl]azanide (LiTFSI) is a common strategy to further enhance its hole mobility and conductivity. However, the use of this additive in spiro-OMeTAD can induce device instability. In this work, a composite HTL without harmful additives is proposed for a stable n-i-p structured PSC. The prepared nickel oxide (NiO) nanoparticles were first sprayed on perovskite film to form a porous NiO film, and spiro-OMeTAD solution was then filled in to construct composite HTL. The PSC using this composite HTL presents better photovoltaic performance than that using NiO and pristine spiro-OMeTAD, respectively, and also exhibits a much better working stability, retaining more than 82% of the initial performance after 200 h in air. We deduce that the enhanced charge transfer at the HTL/Perovskite interface could be induced by the synergistic effect between spiro-OMeTAD and NiO. This work proposes a strategy to construct HTL for PSCs using NiO and pristine spiro-OMeTAD bilayer, which is meaningful to improve photovoltaic performance and working stability of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. G. Xing, N. Mathews, and S. Sun, Science 342, 344 (2013).

    Article  CAS  Google Scholar 

  2. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).

    Article  CAS  Google Scholar 

  3. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).

    Article  CAS  Google Scholar 

  4. J. Xi, K. Xi, A. Sadhanala, K. Zhang, G. Li, H. Dong, T. Lei, F. Yuan, C. Ran, B. Jiao, P. Coxon, C.J. Harris, X. Hou, R. Kumar, and Z. Wu, Nano Energy 56, 741 (2019).

    Article  CAS  Google Scholar 

  5. Y. Yang, J. Song, Y. Zhao, L. Zhu, X. Gu, Y. Gu, M. Che, and Y. Qiang, J. Alloys Compd. 684, 84 (2016).

    Article  CAS  Google Scholar 

  6. W.J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).

    Article  CAS  Google Scholar 

  7. W.J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).

    Article  CAS  Google Scholar 

  8. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Science 338, 643 (2012).

    Article  CAS  Google Scholar 

  9. Q. Qiu, H. Liu, Y. Qin, C. Ren, and J. Song, J. Mater. Sci. 55, 13881 (2020).

    Article  CAS  Google Scholar 

  10. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R.H. Baker, J.H. Yum, J.E. Moser, M. Grätzel, and N.G. Park, Sci. Rep. 2, 1 (2012).

    Google Scholar 

  11. J. Song, S. Li, Y. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X. Gu, and Y. Qiang, J. Alloys Compd. 694, 1232 (2017).

    Article  CAS  Google Scholar 

  12. M. Liu, M.B. Johnston, and H.J. Snaith, Nature 501, 395 (2013).

    Article  CAS  Google Scholar 

  13. J. Song, Y. Yang, Y. Zhao, M. Che, L. Zhu, X. Gu, and Y. Qiang, Mater. Sci. Eng. B 217, 18 (2017).

    Article  CAS  Google Scholar 

  14. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).

    Article  CAS  Google Scholar 

  15. J. Song, G. Li, K. Xi, B. Lei, X. Gao, and R.V. Kumar, J. Mater. Chem. A 2, 10041 (2014).

    Article  CAS  Google Scholar 

  16. M. Bag, Z. Jiang, L.A. Renna, S.P. Jeong, V.M. Rotello, and D. Venkataraman, Mater. Lett. 164, 472 (2016).

    Article  CAS  Google Scholar 

  17. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).

    Article  CAS  Google Scholar 

  18. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, Nat. Mater. 13, 897 (2014).

    Article  CAS  Google Scholar 

  19. F. Yuan, J. Xi, K. Xi, W. Zhang, C. Ren, B. Jiao, X. Hou, A.K.Y. Jen, and Z. Wu, Phys. Status. Solidi R 12, 1800090 (2018).

    Article  CAS  Google Scholar 

  20. S.M. Qaid, M.S. Al Sobaie, M.M. Khan, I.M. Bedja, F.H. Alharbi, M.K. Nazeeruddin, and A.S. Aldwayyan, Mater. Lett. 164, 498 (2016).

    Article  CAS  Google Scholar 

  21. M. Chen, R. Zha, Z. Yuan, Q. Jing, Z. Huang, S. Yang, X. Zhao, D. Xu, and G. Zou, Chem. Eng. J. 313, 791 (2017).

    Article  CAS  Google Scholar 

  22. D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, Nat. Energy 1, 1 (2016).

    Article  CAS  Google Scholar 

  23. J. You, L. Meng, T. Song, T. Guo, Y. Yang, W. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. Marco, and Y. Yang, Nat. Nanotechnol. 11, 75 (2016).

    Article  CAS  Google Scholar 

  24. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, and J. You, Nat. Energy 2, 1 (2016).

    Article  Google Scholar 

  25. H. Tan, A. Jain, O. Voznyy, X. Lan, F. Arquer, J. Fan, R. Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. Quan, Y. Zhao, Z. Lu, Z. Yang, S. Hoogl, and E. Sargent, Science 355, 722 (2017).

    Article  CAS  Google Scholar 

  26. W.S. Yang, B. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, and S.I. Seok, Science 356, 1376 (2017).

    Article  CAS  Google Scholar 

  27. A. Roes, E. Alsema, K. Blok, and K. Patel, Prog. Photovolt. 17, 372 (2009).

    Article  CAS  Google Scholar 

  28. K. Rakstys, M. Saliba, P. Gao, P. Gratia, E. Kamarauskas, S. Paek, V. Jankauskas, and M.K. Nazeeruddin, Angew. Chem. 128, 7590 (2016).

    Article  Google Scholar 

  29. B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Grätzel, L. Kloo, A. Hagfeldt, and L. Sun, Energy Environ. Sci. 9, 873 (2016).

    Article  CAS  Google Scholar 

  30. H.J. Snaith, and M. Grätzel, Appl. Phys. Lett. 89, 262114 (2006).

    Article  CAS  Google Scholar 

  31. A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M.E. Errio, J. Kirkpatrik, J.M. Ball, P. Docampo, I. McPherson, and H.J. Snaith, Phys. Chem. Chem. Phys. 15, 2572 (2013).

    Article  CAS  Google Scholar 

  32. U.B. Cappel, T. Daeneke, and U. Bach, Nano lett. 12, 4925 (2012).

    Article  CAS  Google Scholar 

  33. T. Leijtens, T. Giovenzana, S.N. Habisreutinger, J.S. Tinkham, N.K. Noel, B.A. Kamino, G. Sadoughi, A. Sellinger, H.J. Snaith, and A.C.S. Appl, Mate. Int. 8, 5981 (2016).

    Article  CAS  Google Scholar 

  34. G. Niu, X. Guo, and L. Wang, J. Mater. Chem. A 3, 8970 (2015).

    Article  CAS  Google Scholar 

  35. Z. Hawash, L.K. Ono, S.R. Raga, M.V. Lee, and Y. Qi, Chem. Mater. 27, 562 (2015).

    Article  CAS  Google Scholar 

  36. F. Yuan, Z. Wu, H. Dong, J. Xi, K. Xi, G. Divitini, B. Jiao, X. Hou, S. Wang, and Q. Gong, J. Phys. Chem. C 121, 15318 (2017).

    Article  CAS  Google Scholar 

  37. G.R. Li, and X.P. Gao, Adv. Mater. 32, 1806478 (2020).

    Article  CAS  Google Scholar 

  38. J.A. Christians, R.C. Fung, and P.V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).

    Article  CAS  Google Scholar 

  39. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, Nat. Commun. 5, 1 (2014).

    Google Scholar 

  40. Y. Qin, J. Song, Q. Qiu, Y. Liu, Y. Zhao, L. Zhu, and Y. Qiang, J. Alloys Compd. 810, 151970 (2019).

    Article  CAS  Google Scholar 

  41. Y. Liu, J. Song, Y. Qin, Q. Qiu, Y. Zhao, L. Zhu, and Y. Qiang, J. Mater. Sci. Mater. Electron. 30, 15627 (2019).

    Article  CAS  Google Scholar 

  42. H. Liu, J. Song, Y. Qin, J. Mou, Q. Qiu, Y. Zhao, L. Zhu, and Y. Qiang, Vacuum 172, 109077 (2020).

    Article  CAS  Google Scholar 

  43. Q. Qiu, J. Mou, J. Song, and Y. Qiang, J. Electron. Mater. 49, 6300 (2020).

    Article  CAS  Google Scholar 

  44. J. Song, L. Zhao, S. Huang, X. Yan, Q. Qiu, Y. Zhao, L. Zhu, Y. Qiang, and G. Li, Chemsuschem 14, 5 (2021).

    Article  CAS  Google Scholar 

  45. M.G. Kim, M.G. Kanatzidis, A. Facchetti, and T.J. Marks, Nat. Mater. 10, 382 (2011).

    Article  CAS  Google Scholar 

  46. Y. Cheng, M. Li, X. Liu, S.H. Cheung, H.T. Chandran, H.-W. Li, X. Xu, Y. Xie, S.K. So, H.-L. Yip, and S.-W. Tsang, Nano Energy 61, 496 (2019).

    Article  CAS  Google Scholar 

  47. Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Zh. Zhao, Q. Chen, Y. Cheng, and H. Zhou, J. Mater. Chem. A 5, 6597 (2017).

    Article  CAS  Google Scholar 

  48. M. Feng, M. Wang, H. Zhou, W. Li, S. Wang, Z. Zang, and S. Chen, Appl. Mater. Int. 12, 50684 (2020).

    Article  CAS  Google Scholar 

  49. R. Li, P. Wang, B. Chen, X. Cui, Y. Ding, Y. Li, D. Zhang, Y. Zhao, and X. Zhang, ACS Energy Lett. 5, 79 (2019).

    Article  CAS  Google Scholar 

  50. Y. Cheng, and L. Ding, Energy Environ. Sci. 14, 3233 (2021).

    Article  Google Scholar 

  51. D. Soo Kim, and H. Chul Lee, J. Appl. Phys. 112, 034504 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial support from the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_1024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhu or Jian Song.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 305 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Mou, J., Zhu, L. et al. Synergistic Effect of NiO and Spiro-OMeTAD for Hole Transfer in Perovskite Solar Cells. J. Electron. Mater. 50, 6512–6517 (2021). https://doi.org/10.1007/s11664-021-09193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09193-z

Keywords

Navigation