Skip to main content

Advertisement

Log in

Defect Emission Energy and Particle Size Effects in Fe:ZnO Nanospheres Used in Li-Ion Batteries as Anode

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pure and Fe-doped ZnO (FexZnyV1−xyO2) nanostructures with varying iron mole percentages of 3%, 4.5%, and 6% were synthesized by co-precipitation without vacuum ambient. Structural, morphological, defect, and electrochemical properties, when serving as an anode in Li-ion batteries, were studied. All the samples have a wurtzite ZnO crystallinity, and a slight shift from the x-ray diffraction patterns of Fe:ZnO samples shows that Fe3+ ions were substituted by Zn2+ ions. As the percentage of the Fe mole increases from 3% to 4.5%, the size of the particles decreases from 12 nm to 9 nm, but increases to 14 nm with 6% Fe doping. Although all the samples have a spherical type, and porous surfaces are exhibited in the 4.5% Fe:ZnO nanospheres. The emission bands originate due to energy levels generated by ZnO intrinsic defects in all the samples with changing emission peaks by Fe doping. The 4.5% Fe:ZnO results substantially enhance the specific capacity of 400 mAh g−1 during 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Subramanyana, S. Natarajana, Y. Leeb, and V. Aravindan, Chem. Eng. J. 397, 125472 (2020).

    Article  Google Scholar 

  2. Y. Sun, Y. Li, L. Sheng, T. Lv, R. Guo, T. Yang, Q. Zhang, and J. Xie, Chem. Eng. J. 414, 128732 (2021).

    Article  CAS  Google Scholar 

  3. C. Wang, Y. Yang, D. Lu, R. Guan, J. Wang, and X. Bian, J. Alloys Compd. 858, 157680 (2021).

    Article  CAS  Google Scholar 

  4. J. Huang, X. Guo, J. Huang, H. Tan, X. Du, Y. Zhu, and B. Zhang, J. Power Sources 481, 228916 (2021).

    Article  CAS  Google Scholar 

  5. Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu, S. Yan, C. Ge, Q. Zhang, X. Wang, X. Shang, S. Fan, Y. Long, L. Gu, G.X. Miao, G. Yu, and J.S. Moodera, Nat. Mater. 20, 76 (2021).

    Article  Google Scholar 

  6. M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang, H. Xue, and H. Pang, Adv. Sci. 5, 1700592 (2018).

    Article  Google Scholar 

  7. J. Li, S. Hwang, F. Guo, S. Li, Z. Chen, R. Kou, K. Sun, C.J. Sun, H. Gan, A. Yu, E.A. Stach, H. Zhou, and D. Su, Nat. Commun. 10, 2224 (2019).

    Article  Google Scholar 

  8. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Mater. Today 18, 252 (2015).

    Article  CAS  Google Scholar 

  9. L. Wang, G. Zhang, Q. Liu, and H. Duan, Mater. Chem. Front. 2, 1414 (2018).

    Article  CAS  Google Scholar 

  10. T. Eisenmann, J. Asenbauer, S.J. Rezvani, T. Diemant, R.J. Behm, D. Geiger, U. Kaiser, S. Passerini, and D. Bresser, Small Methods 5, 2001021 (2021).

    Article  CAS  Google Scholar 

  11. G. Giuli, T. Eisenmann, D. Bresser, A. Trapananti, J. Asenbauer, F. Mueller, and S. Passerini, Materials 11, 49 (2018).

    Article  Google Scholar 

  12. M. Barberio and P. Antici, Sci. Rep. 7, 41372 (2017).

    Article  CAS  Google Scholar 

  13. W. Zhang, L. Du, Z. Chen, J. Hong, and L. Yue, J. Nanomater. 2016, 8056302 (2016).

    Google Scholar 

  14. S.J. Lee, J. Theerthagiri, P. Nithyadharseni, P. Arunachalam, D. Balaji, A.M. Kumar, J. Madhavan, V. Mittal, and M.Y. Choi, Renew. Sustain. Energy Rev. 143, 110849 (2021).

    Article  CAS  Google Scholar 

  15. Y. Yu, J. Theerthagiri, S. Jun Lee, G. Muthusamy, M. Ashokkumar, and M. Yong Choi, Chem. Eng. J. 411, 128486 (2021).

    Article  CAS  Google Scholar 

  16. J.J. Beltrán, C.A. Barreroa, and A. Punnoose, Phys. Chem. Chem. Phys. 17, 15284 (2015).

    Article  Google Scholar 

  17. J. Park, Y.S. Rim, P. Senanayake, J. Wu, and D. Streit, Coatings 10, 206 (2020).

    Article  CAS  Google Scholar 

  18. F. Mueller, A. Gutsche, H. Nirschl, D. Geiger, U. Kaiser, D. Bresser, and S. Passerin, J. Electrochem. Soc. 164, A6123 (2017).

    Article  CAS  Google Scholar 

  19. D. Bresser, F. Mueller, M. Fiedler, S. Krueger, R. Kloepsch, D. Baither, M. Winter, E. Paillard, and S. Passerini, Chem. Mater. 25, 4977 (2013).

    Article  CAS  Google Scholar 

  20. P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014).

    Article  Google Scholar 

  21. K. Raja, P.S. Ramesh, and D. Geetha, Spectrochim. Acta Part A 131, 183 (2014).

    Article  CAS  Google Scholar 

  22. L. Xu and X. Li, J. Cryst. Growth 312, 85 (2010).

    Google Scholar 

  23. M.O. Guler, T. Cetinkaya, U. Tocoglu, and H. Akbulut, Microelectron. Eng. 118, 54 (2014).

    Article  CAS  Google Scholar 

  24. A. Moezzi, M. Cortie, and A. McDonagh, Dalton Trans. 40, 4871 (2011).

    Article  CAS  Google Scholar 

  25. A. Layek and G. Mishra, J. Phys. Chem. C 116, 24757 (2012).

    Article  CAS  Google Scholar 

  26. X. Wu, Z. Wei, L. Zhang, X. Wang, H. Yang, and J. Jiang, J. Nanomater. 2014, 792102 (2014).

    Google Scholar 

  27. D.C. Reynolds, D.C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).

    Article  CAS  Google Scholar 

  28. P.B. Taunk, R. Das, D.P. Bisen, and R.K. Tamrakar, J. Radiat. Res. Appl. Sci. 8, 433 (2015).

    Article  Google Scholar 

  29. B. Deng, Z. Guo, and H. Sun, Appl. Phys. Lett. 96, 172106 (2010).

    Article  Google Scholar 

  30. S. Li, W. Jin, S.H. Kim, S.H. Joo, G. Nam, P. Oh, Y.K. Kim, S.K. Kwak, and J. Cho, Angew. Chem. 58, 10478 (2019).

    Article  Google Scholar 

  31. J. Jaseliunaite and A. Galdikas, Materials 13, 1051 (2020).

    Article  CAS  Google Scholar 

  32. K. Shen, Y. Wang, J. Zhang, Y. Zong, G. Li, C. Zhao, and H. Chen, Chem. Phys. 22, 3030 (2020).

    CAS  Google Scholar 

Download references

Funding

This research was supported by Council of Scientific Research Project of Çanakkale Onsekiz Mart University (Grant Number: FUK-2018-2613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Sarf.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarf, F., Kızıl, H. Defect Emission Energy and Particle Size Effects in Fe:ZnO Nanospheres Used in Li-Ion Batteries as Anode. J. Electron. Mater. 50, 6475–6481 (2021). https://doi.org/10.1007/s11664-021-09191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09191-1

Keywords

Navigation