Skip to main content
Log in

Origin and Generation Process of a Triangular Single Shockley Stacking Fault Expanding from the Surface Side in 4H-SiC PIN Diodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A triangular single Shockley stacking fault (1SSF) in 4H-SiC, expanding from the surface to the substrate/epilayer interface, was investigated. The triangular 1SSF was observed during electroluminescence examination of PIN diodes that had line-and-space anodes with open windows. The threshold current density of the 1SSF expansion was comparatively intermediate, and differed from that of a 1SSF that expanded from a basal plane dislocation (BPD) that had penetrated from the substrate into the epilayer, and from that of a 1SSF that expanded from a BPD that had converted into threading edge dislocations (TEDs) at the substrate/epilayer interface. No BPDs or surface damage such as cracks were observed by photoluminescence imaging, synchrotron x-ray topography imaging, or scanning electron microscope imaging near the origin of the expansion region. High-resolution observation using cross-sectional transmission electron microscopy showed that a partial dislocation (PD) was present on the basal plane and two inclined TEDs were present on both sides of the PD. A g·b analysis showed that this dislocation had a Burgers vector of ± (1/3) [11\(\overline{2}\)0], and it was estimated to be a combination of a TED-BPD-TED structure with a short BPD before expansion. Therefore, the triangular 1SSF from the surface side can be explained to have expanded from this BPD. Furthermore, considering the possibility of the BPD-TED conversion at the epitaxial growth process, the TED-BPD-TED dislocation was speculated to have formed after epitaxial growth. The perfect control of the forward voltage degradation of 4H-SiC device is thought to be realized by focusing on this type of BPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Lendenmann, F. Dahlquist, N. Johansson, R. Söderholm, P.A. Nilsson, J.P. Bergman, and P. Skytt, Mater. Sci. Forum 353–356, 727 (2001).

    Article  Google Scholar 

  2. J.Q. Liu, M. Skowronski, C. Hallin, R. Söderholm, and H. Lendenmann, Appl. Phys. Lett. 80, 749 (2002).

    Article  CAS  Google Scholar 

  3. A. Agarwal, H. Fatima, S. Haney, and S.H. Ryu, IEEE Electron Device Lett. 28, 587 (2007).

    Article  CAS  Google Scholar 

  4. M. Skowronski, and S. Ha, J. Appl. Phys. 99, 011101 (2006).

    Article  Google Scholar 

  5. J.P. Bergman, H. Lendenmann, P.A. Nilsson, U. Lindefeit, and P. Skytt, Mater. Sci. Forum 353–356, 299 (2001).

    Article  Google Scholar 

  6. R.E. Stahlbush, J.B. Fedison, S.D. Arthur, L.B. Rowland, J.W. Kretchmer, and S. Wang, Mater. Sci. Forum 389–393, 427 (2002).

    Article  Google Scholar 

  7. N.A. Mahadik, R.E. Stahlbush, M.G. Ancona, E.A. Imhoff, K.D. Hobart, R.L. Myers-Ward, C.R. Eddy Jr., D.K. Gaskill, and F.J. Kub, Appl. Phys. Lett. 100, 042102 (2012).

    Article  Google Scholar 

  8. T. Miyanagi, H. Tsuchida, I. Kamata, and T. Nakamura, Appl. Phys. Lett. 89, 062104 (2006).

    Article  Google Scholar 

  9. K. Konishi, S. Yamamoto, S. Nakata, Y. Nakamura, Y. Nakanishi, T. Tanaka, Y. Mitani, N. Tomita, Y. Toyoda, and S. Yamakawa, J. Appl. Phys. 114, 014504 (2013).

    Article  Google Scholar 

  10. K. Konishi, S. Yamamoto, S. Nakata, Y. Toyoda, and S. Yamakawa, Mater. Sci. Forum 778–780, 342 (2014).

    Article  Google Scholar 

  11. T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, J. Appl. Phys. 120, 115101 (2016).

    Article  Google Scholar 

  12. Y. Iwahashi, M. Miyazato, M. Miyajima, Y. Yonezawa, T. Kato, H. Fujiwara, K. Hamada, A. Otsuki, and H. Okumura, Mater. Sci. Forum 897, 218 (2017).

    Article  Google Scholar 

  13. A. Okada, J. Nishio, R. Iijima, C. Ota, A. Goryu, M. Miyazato, M. Ryo, T. Shinohe, M. Miyajima, T. Kato, Y. Yonezawa, and H. Okumura, Jpn. J. Appl. Phys. 57, 061301 (2018).

    Article  Google Scholar 

  14. A. Okada, C. Ota, J. Nishio, A. Goryu, R. Iijima, K. Nakayama, T. Kato, Y. Yonezawa, and H. Okumura, Mater. Sci. Forum 963, 280 (2019).

    Article  Google Scholar 

  15. J.D. Caldwell, R.E. Stahlbush, M.G. Ancona, O.J. Glembocki, and K.D. Hobart, J. Appl. Phys. 108, 044503 (2010).

    Article  Google Scholar 

  16. A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Philos. Mag. 97, 2736 (2017).

    Article  CAS  Google Scholar 

  17. A. Iijima, and T. Kimoto, Appl. Phys. Lett. 116, 092105 (2020).

    Article  CAS  Google Scholar 

  18. Y. Mannen, K. Shimada, K. Asada, and N. Ohtani, J. Appl. Phys. 125, 085705 (2019).

    Article  Google Scholar 

  19. S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, J. Appl. Phys. 57, 04FR07 (2018).

    Article  Google Scholar 

  20. J. Nishio, A. Okada, C. Ota, and M. Kushibe, Mater. Sci. Forum 1004, 376 (2020).

    Article  Google Scholar 

  21. J. Nishio, A. Okada, C. Ota, and M. Kushibe, J. Electron. Mater. 49, 5232 (2020).

    Article  CAS  Google Scholar 

  22. J. Nishio, A. Okada, C. Ota, and R. Iijima, J. Appl. Phys. 128, 085705 (2020).

    Article  CAS  Google Scholar 

  23. J. Nishio, A. Okada, C. Ota, and R. Iijima, Jpn. J. Appl. Phys. 60, SBBD01 (2021).

    Article  CAS  Google Scholar 

  24. T. Miyazawa, T. Tawara, R. Takanashi, and H. Tsuchida, Appl. Phys. Express 9, 111301 (2016).

    Article  Google Scholar 

  25. C. Ota, J. Nishio, K. Takao, and T. Shinohe, Mater. Sci. Forum 778–780, 851 (2014).

    Article  Google Scholar 

  26. K. Konishi, R. Fujita, Y. Mori, and A. Shima, Semicond. Sci. Technol. 33, 125014 (2018).

    Article  Google Scholar 

  27. H. Jacobson, J.P. Bergman, C. Hallin, and E. Janzén, J. Appl. Phys. 95, 1485 (2004).

    Article  CAS  Google Scholar 

  28. B. Kallinger, S. Polster, P. Berwian, J. Friedrich, and A.N. Danilewsky, J. Appl. Phys. 114, 183507 (2013).

    Article  Google Scholar 

  29. F. Wu, S. Byrappa, H. Wang, Y. Chen, B. Raghothamachar, M. Dudley, E.K. Sanchez, G. Chung, D. Hansen, S.G. Mueller, and M.J. Loboda, Mater. Res. Soc. Symp. Proc. 1433, 53 (2012).

    Article  Google Scholar 

  30. H. Sako, T. Yamashita, K. Tamura, M. Sasaki, M. Nagaya, T. Kido, K. Kawata, T. Kato, K. Kojima, S. Tsukimoto, H. Matsuhata, and M. Kitabatake, Mater. Sci. Forum 778–780, 370 (2014).

    Article  Google Scholar 

  31. R. Tanuma, M. Nagano, I. Kamata, and H. Tsuchida, Appl. Phys. Express 7, 121303 (2014).

    Article  Google Scholar 

  32. X.R. Huang, D.R. Black, A.T. Macrander, J. Maj, Y. Chen, and M. Dudley, Appl. Phys. Lett. 91, 231903 (2007).

    Article  Google Scholar 

  33. Y. Tokuda, T. Yamashita, I. Kamata, T. Naijo, T. Miyazawa, S. Hayashi, N. Hoshino, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, J. Appl. Phys. 122, 045707 (2017).

    Article  Google Scholar 

  34. H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chen, and T. Sekiguchi, Philos. Mag. 94, 1674 (2014).

    Article  CAS  Google Scholar 

  35. M. Abadier, H. Song, T.S. Sudarshan, Y.N. Picard, and M. Skowronski, J. Cryst. Growth 418, 7 (2015).

    Article  CAS  Google Scholar 

  36. W. Sun, Y. Song, C. Liu, T. Peng, W. Wang, and X. Chen, Mater. Express 5, 63 (2015).

    Article  CAS  Google Scholar 

  37. M. Nagano, H. Tsuchida, T. Suzuki, T. Hatakeyama, J. Senzaki, and K. Fukuda, J. Appl. Phys. 108, 013511 (2010).

    Article  Google Scholar 

  38. X. Zhang, and H. Tsuchida, J. Appl. Phys. 111, 123512 (2012).

    Article  Google Scholar 

  39. Y. Tamura, H. Sakakima, S. Takamoto, A. Hatano, and S. Izumi, Jpn. J. Appl. Phys. 58, 081005 (2019).

    Article  CAS  Google Scholar 

  40. H. Tsuchida, I. Kamata, M. Nagano, L. Storasta, and T. Miyanagi, Mater. Sci. Forum 556–557, 271 (2007).

    Article  Google Scholar 

Download references

Acknowledgment

The SXRT experiments were performed at SAGA-LS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiharu Ota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ota, C., Nishio, J., Okada, A. et al. Origin and Generation Process of a Triangular Single Shockley Stacking Fault Expanding from the Surface Side in 4H-SiC PIN Diodes. J. Electron. Mater. 50, 6504–6511 (2021). https://doi.org/10.1007/s11664-021-09186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09186-y

Keywords

Navigation