Skip to main content
Log in

Study on the Performance of Different Valence Cations Doped into LiCoO2 Cathode for Li-Ion Batteries

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we systematically studied the electrochemical performance of the doped LiCoO2 cathode using density functional theory, in which one Li ion was substituted by different valence cations Na+ Mg2+, and Al3+. It was found that the effects of different cations on the electrochemical properties of Li-ion batteries are quite different. Na doping can improve the diffusion rate of Li ions and intercalation potential, Mg doping can improve electronic conductivity, and Al doping can improve cycle performance. For complex Li-ion battery systems, co-doping of multiple types of ions is the best strategy. These results provide theoretical guidance for the cations doping of cathode materials and promote the design of high-performance Li-ion batteries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.B. Goodenough, and Y. Kim, Chem. Mater. 22, 587 (2010).

    Article  CAS  Google Scholar 

  2. J.M. Tarascon, Philos. Phil. Trans. R. Soc. A 368, 3227 (2010).

    Article  Google Scholar 

  3. J.B. Goodenough, and K.S. Park, J. Am. Chem. Soc. 135, 1167 (2013).

    Article  CAS  Google Scholar 

  4. S.Q. Shi, C.Y. Ouyang, M.S. Lei, and W.H. Tang, J. Power Sources 171, 908 (2007).

    Article  CAS  Google Scholar 

  5. S. Kim, S. Choi, K. Lee, G.J. Yang, S.S. Lee, and Y. Kim, Phys. Chem. Chem. Phys. 19, 4104 (2017).

    Article  CAS  Google Scholar 

  6. S.J. Sheng, G.M. Chen, B. Hu, R.Z. Yang, and Y.H. Xu, J. Electroanal. Chem. 795, 59 (2017).

    Article  CAS  Google Scholar 

  7. L.L. Wang, J. Ma, C. Wang, X.R. Yu, R. Liu, F. Jiang, X.W. Sun, A. Du, X.H. Zhou, and G.L. Cui, Adv. Sci. 6, 1900355 (2019).

    Article  Google Scholar 

  8. Q. Liu, X. Su, D. Lei, Y. Qin, J.G. Wen, F.M. Guo, Y.A. Wu, Y.C. Rong, R.H. Kou, X.H. Xiao, F. Aguesse, J. Bareño, Y. Ren, W.Q. Lu, and Y.X. Li, Nat. Energy 3, 936 (2018).

    Article  CAS  Google Scholar 

  9. S. Hao, N.Q. Zhao, C.S. Shi, C.N. He, J.J. Li, and E.Z. Liu, Ceram. Int. 41, 2294 (2015).

    Article  CAS  Google Scholar 

  10. H.G. Jung, N.V. Gopal, J. Prakash, D.W. Kim, and Y.K. Sun, Electrochim. Acta 68, 153 (2012).

    Article  CAS  Google Scholar 

  11. S. Valanarasu, and R. Chandramohan, J. Alloy. Compd. 494, 434 (2010).

    Article  CAS  Google Scholar 

  12. K. Sivajee-Ganesh, B. Purusottam-Reddy, O.M. Hussain, A. Mauger, and C.M. Julien, Mater. Sci. Eng. B 209, 30 (2016).

    Article  CAS  Google Scholar 

  13. A. Zhou, W. Wang, Q. Liu, Y. Wang, X. Yao, F. Qing, E. Li, T. Yang, L. Zhang, and J. Li, J. Power Sources 362, 131 (2017).

    Article  CAS  Google Scholar 

  14. J. Yu, Z. Han, X. Hu, H. Zhan, Y. Zhou, and X. Liu, J. Power Sources 262, 136 (2014).

    Article  CAS  Google Scholar 

  15. J.N. Zhang, Q.H. Li, C.Y. Ouyang, X.Q. Yu, M. Ge, X.J. Huang, E.Y. Hu, C. Ma, S.F. Li, R.J. Xiao, W.L. Yang, Y. Chu, Y.J. Liu, H.G. Yu, X.Q. Yang, X.J. Huang, L.Q. Chen, and H. Li, Nat. Energy 4, 594 (2019).

    Article  CAS  Google Scholar 

  16. S.H. Ju, H.C. Jang, and Y.C. Kang, Mater. Chem. Phys. 112, 536 (2008).

    Article  CAS  Google Scholar 

  17. C. Pouillerie, L. Croguennec, Ph. Biensan, P. Willmann, and C. Delmas, J. Electrochem. Soc. 147, 2061 (2000).

    Article  CAS  Google Scholar 

  18. W. Luo, X. Li, and J.R. Dahn, J. Electrochem. Soc. 157, A782 (2010).

    Article  CAS  Google Scholar 

  19. G. Hautier, S.P. Ong, A. Jain, C.J. Moore, and G. Ceder, Phys. Rev. B 85, 155208 (2012).

    Article  Google Scholar 

  20. D.Y. Jiang, C.Y. Ouyang, and S.Q. Liu, Fusion Eng. Des. 121, 227 (2017).

    Article  CAS  Google Scholar 

  21. A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, and G. Ceder, Phys. Rev. B 84, 045115 (2011).

    Article  Google Scholar 

  22. V.V. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  CAS  Google Scholar 

  23. B.J. Morgan, and G.W. Watson, Surf. Sci. 601, 5034 (2007).

    Article  CAS  Google Scholar 

  24. Q.H. Zhou, H.H. Xu, L. Lu, W.H. Liu, Y. Liang, H.L. Li, and T. Chen, Vacuum 177, 109310 (2020).

    Article  Google Scholar 

  25. L.L. Fang, M. Wang, Q.H. Zhou, H.H. Xu, W. Hu, and H.L. Li, Colloid Surface A 600, 124940 (2020).

    Article  CAS  Google Scholar 

  26. W.H. Liu, H.H. Xu, Q.H. Zhou, Y.W. Dai, W. Hu, and H.L. Li, J. Electron. Mater. 49, 5523 (2020).

    Article  CAS  Google Scholar 

  27. K. Wu, G. Jia, X. Shangguan, G. Yang, Z. Zhu, Z. Peng, Q. Zhuge, F. Li, X. Cui, and S. Liu, Energy Technol. 6, 1885 (2018).

    Article  CAS  Google Scholar 

  28. W.S. Yoon, K.K. Lee, and K.B. Kim, Electrochem. Solid ST. 4, A35 (2001).

    Article  CAS  Google Scholar 

  29. S.T. Myung, N. Kumagai, S. Komaba, and H.T. Chung, Solid State Ionics 139, 47 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Project (Grant No. GJJ161406) of Jiangxi Provincial Education Department.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cao or Huili Li.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Chen, Z., Zhong, R. et al. Study on the Performance of Different Valence Cations Doped into LiCoO2 Cathode for Li-Ion Batteries. J. Electron. Mater. 50, 6386–6391 (2021). https://doi.org/10.1007/s11664-021-09150-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09150-w

Keywords

Navigation