Skip to main content
Log in

A Superjunction MOSFET with Ultralow Reverse Recovery Charge and Low Switching Losses

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High reverse recovery charge (QRR) and high switching losses have become the main factors that constrain the performance and application area of a superjunction MOSFET (SJ-MOSFET). To reduce QRR and switching losses, an SJ-MOSFET with p-type Schottky diode and source field-plate is proposed and investigated. The p-type Schottky diode consists of Schottky contact and p-base, which is reverse series-connected with body pn junction diode. The source field-plate is formed by implementing a polysilicon field-plate electrically coupled to the source, which is on the top of an n-pillar. During the reverse conduction state, the p-type Schottky diode is reverse biased, which dramatically suppresses minority carriers injecting into the drift region. Simultaneously, an electron accumulation layer formed under the source field-plate, which provides a path for the reverse current. Consequently, compared with the conventional SJ-MOSFET (Conv-SJ-MOSFET), the proposed SJ-MOSFET achieves an 84.0% lower QRR with almost no sacrifice in other characteristics. Moreover, with reduced gate area, the proposed device also exhibits 47.4% and 66.0% lower gate charge (QG) and gate to drain charge (QGD), respectively. The significantly reduced QG, QGD, and QRR contribute to an overall improvement in switching losses and result in a decrease of over 54.8% in total power losses with operation frequency higher than 50 kHz, demonstrating great potential of the proposed SJ-MOSFET used in power conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. F. Udrea, G. Deboy, and T. Fujihira, IEEE Trans. Electron Devices 64, 713 (2017).

    Article  CAS  Google Scholar 

  2. J. Park, and J.H. Lee, IEEE Electron Device Lett. 38, 111 (2017).

    Article  Google Scholar 

  3. L. Lorenz, G. Deboy, A. Knapp, and N. Marz, in 1999 IEEE 11st International Symposium on Power Semiconductor Devices and ICs (ISPSD) (1999), p. 3.

  4. W. Saito, I. Omura, S. Aida, S. Koduki, M. Izumisawa, H. Yoshioka, and T. Ogura, IEEE Trans. Electron Devices 52, 2317 (2005).

    Article  CAS  Google Scholar 

  5. Z. Yang, J. Zhu, X. Tong, W. Sun, F. Bian, Y. Tian, Y. Zhu, P. Ye, Z. Li and B. Hou, in 2017 IEEE 29th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2017), p. 155.

  6. P. Haaf and J. Harper. in Fairchild Power Seminar (2007), p. 23. https://www.mikrocontroller.net/attachment/351267/Understanding-Diode-Reverse-Recovery-and-Its-Effect-on-Switching-Losses.pdf. Accessed 3 June 2021.

  7. P. Li, J. Guo, S. Hu, Z. Lin, and F. Tang, IEEE Trans. Electron Devices 67, 1693 (2020).

    Article  CAS  Google Scholar 

  8. D. Arai, M. Yamaji, K. Murakami, M. Honda, and S. Kunori, in 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2018), p. 180.

  9. M. Schmitt, H.-J. Schulze, A. Schlogl, A. Vosseburger, A. Willmeroth, G. Deboy, G. Wachutka, in 2002 IEEE 14th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2002), p. 229.

  10. W. Saito, S. Ono, and H. Yamashita, in 2014 IEEE 26th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2014), p. 87.

  11. X. Cheng, X.-M. Liu, J. K. O. Sin, and B.-W. Kang, in 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2003), p. 304.

  12. Z. Lin, S. Hu, Q. Yuan, X. Zhou, and F. Tang, IEEE Electron Device Lett. 38, 1059 (2017).

    Article  CAS  Google Scholar 

  13. J. Wei, M. Zhang, H. Jiang, X. Zhou, B. Li, and K.J. Chen, IEEE Electron Device Lett. 40, 1155 (2019).

    Article  CAS  Google Scholar 

  14. S. Li, A. Li, T. Tian, J. Zhu, L. Zhang, W. Sun, G. Zhu, Y. Zou, X. Tong, Y. Lu, J. Wei, and R. Ye, in 2019 IEEE 31th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2019), p. 479.

  15. M. Zhang, J. Wei, X. Zhou, H. Jiang, B. Li, and K.J. Chen, IEEE Electron Device Lett. 40, 79 (2018).

    Google Scholar 

  16. Z.-Y. Ye, L. Liu, Y. Yao, M.-Z. Lin, and P.-F. Wang, IEEE Electron Device Lett. 40, 1159 (2019).

    Article  CAS  Google Scholar 

  17. MEDICI, Two Dimensional Device Simulation Program, http://apachepersonal.miun.se/~kenber/files/MediciMan.pdf. Accessed 3 June 2021.

  18. W. Chen, X. Xu, X. Liu, C. Liu, Y. Shi, N. Chen, F. Wang, Y. Wang, K. Zhang, Q. Zhou, Z. Li, and B. Zhang, IEEE Trans. Electron Devices 66, 4314 (2019).

    Article  CAS  Google Scholar 

  19. W. Chen, C. Liu, Y. Shi, Y. Liu, H. Tao, C. Liu, Q. Zhou, Z. Li, and B. Zhang, IEEE Trans. Electron Devices 64, 4206 (2017).

    Article  Google Scholar 

  20. C. Liu, W. Chen, Y. Shi, H. Tao, Q. Zhou, H. Zuo, B. Qiao, Y. Xia, Z. Xiao, W. Gao, N. Chen, X. Xu, Q. Zhou, Z. Li, and B. Zhang, IEEE Trans. Electron Devices 66, 1018 (2019).

    Article  CAS  Google Scholar 

  21. C. Liu, W. Chen, R. Sun, Y. Shi, Q. Zhou, Z. Li, and B. Zhang, IEEE Electron Device Lett. 40, 1965 (2019).

    Article  Google Scholar 

  22. H.C. Card, IEEE Trans. Electron Devices 23, 538 (1976).

    Article  Google Scholar 

  23. B. Jayant Baliga, Fundamentals of Power Semiconductor Devices, 1st ed., (New York: Spinger, 2008).

    Book  Google Scholar 

  24. S. Xu, C. Ren, Y.C. Liang, P.-D. Foo, and J.K.O. Sin, IEEE Trans. Electron Devices 48, 2168 (2001).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51877030), Stable Support Project (No. JCKY201924C002), and Key Laboratory Fund (No. 61426050102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Chen, W., Sun, R. et al. A Superjunction MOSFET with Ultralow Reverse Recovery Charge and Low Switching Losses. J. Electron. Mater. 50, 6297–6306 (2021). https://doi.org/10.1007/s11664-021-09142-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09142-w

Keywords

Navigation