Skip to main content
Log in

XRD, XANES, and Electrical Conductivity Analysis of La- and Zr-Doped Ba0.5Sr0.5Fe0.9Cu0.1O3-δ Suitable for IT-SOFC Cathodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lanthanum- and zirconium-doped perovskite Ba0.5Sr0.5Fe0.9Cu0.1O3-δ ceramics, i.e., LaBa0.5Sr0.5Fe1.8Cu0.2O6 (LBSFC) and Ba0.5Sr0.5Fe0.85Cu0.1Zr0.05O3-δ (BSFCZ), were synthesized and characterized. The characterizations include x-ray diffraction, scanning electron microscopy, x-ray near-edge absorption spectroscopy of the Fe K-edge and Cu K-edge, iodometric titration, and electrical conductivity measurements. The structure of BSFCZ was pseudo-cubic single perovskite, whereas LBSFC was orthorhombic double perovskite. It was also discovered that the iron and copper in the octahedron-site has a mixed oxidation state with iron having 3+/4+ and copper 2+/3+. The ratio of Fe3+/Fe4+ was found to be 59/41 for LBSFC and 75/25 for BSFCZ. Similarly, copper has a mixed Cu2+/Cu3+ = 24/76 for BSFCZ and 44/56 for LBSFC. The unit cell symmetry, the presence of La3+, and the formation of Fe4+/Cu3+ are thought to be responsible for the improvement in the electrical conductivity and performance of the LBSFC. In contrast, the Zr4- stabilized perovskite structure was unfavorable for electrical conductivity. The electrical performance of the LBSFC achieved a maximum conductivity σ = 150 S/cm-1 at 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Li, B. Wei, C.X. Su, C.Q. Wang, and Z. Lü, J. Power Sour. 453, 227875 (2020).

    Article  CAS  Google Scholar 

  2. C. Arrivé, T. Delahaye, O. Joubert, and G.H. Gauthier, Ceram. Int. 46, 5841 (2020).

    Article  Google Scholar 

  3. F. Yadollahi Farsani, M. Jafari, E. Shahsavari, H. Shakeripour, and H. Salamati, Int. J. Hydrogen Energy 45, 8915 (2020).

    Article  CAS  Google Scholar 

  4. A. Mater, A.H. Othmani, A. Boukhachem, and A. Madani, J. Electron. Mater. 49, 4123 (2020).

    Article  CAS  Google Scholar 

  5. H. Pardo, W.A. Ortiz, F.M. Araujo-Moreira, L. Suescun, B. Toby, E. Quagliata, C.A. Negreira, K. Prassides, and A.W. Mombru, Phys. C Supercond. Appl. 313, 105 (1999).

    Article  CAS  Google Scholar 

  6. R. Li, F. Jin, Y. Zhang, B. Niu, J. Liu, and T. He, Int. J. Hydrogen Energy 44, 8467 (2019).

    Article  CAS  Google Scholar 

  7. X. Mao, T. Yu, and G. Ma, J. Alloys Compd. 637, 286 (2015).

    Article  CAS  Google Scholar 

  8. S. Afroze, A.H. Karim, Q. Cheok, S. Eriksson, and A.K. Azad, Front. Energy 13, 770 (2019).

    Article  Google Scholar 

  9. J. Yin, Y. Yin, J. Lu, C. Zhang, M. Nguyen, and Z. Ma, J. Phys. Chem. C 118, 13357 (2014).

    Article  CAS  Google Scholar 

  10. L. Zhao, B. He, Y. Ling, Z. Xun, R. Peng, G. Meng, and X. Liu, Int. J. Hydrogen Energy 35, 3769 (2010).

    Article  CAS  Google Scholar 

  11. S. Shahgaldi, Z. Yaakob, and D. Jafar, J. Alloys Compd. 509, 9005 (2011).

    Article  CAS  Google Scholar 

  12. S. Vazquez, J. Basbus, A.L. Soldati, F. Napolitano, A. Serquis, and L. Suescun, J. Power Sour. 274, 318 (2015).

    Article  CAS  Google Scholar 

  13. D. Xie, W. Guo, R. Guo, Z. Liu, D. Sun, L. Meng, M. Zheng, and B. Wang, Fuel Cells 16, 829 (2016).

    Article  CAS  Google Scholar 

  14. F. Dong, D. Chen, Y. Chen, Q. Zhao, and Z. Shao, J. Mater. Chem. 22, 15071 (2012).

    Article  CAS  Google Scholar 

  15. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics, 97th ed (CRC Press, 2017)

  16. G. Yang, J. Shen, Y. Chen, M.O. Tadé, and Z. Shao, J. Power Sour. 298, 184 (2015).

    Article  CAS  Google Scholar 

  17. W. He, J. Fan, H. Zhang, M. Chen, Z. Sun, and M. Ni, Int. J. Hydrogen Energy 44, 32164 (2019).

    Article  CAS  Google Scholar 

  18. O. Haas, U.F. Vogt, C. Soltmann, A. Braun, W.S. Yoon, X.Q. Yang, and T. Graule, Mater. Res. Bull. 44, 1397 (2009).

    Article  CAS  Google Scholar 

  19. J. Blasco, B. Aznar, J. García, G. Subías, J. Herrero-Martín, and J. Stankiewicz, Phys. Rev. B 77, 1 (2008).

    Article  Google Scholar 

  20. F. Fitriana, D.Z. Anjarwati, P.S.N. Baity, and S. Suasmoro, IOP Conf. Ser. Mater. Sci. Eng. 395, 3 (2018).

    Article  Google Scholar 

  21. F. Fitriana, M. Zainuri, M. A. Baqiya, M. Kato, P. Kidkhunthod, and S. Suasmoro, Bull. Mater. Sci. 43, (2020).

  22. B. A. Hunter, Rietica - a visual Rietveld program. (2000).

  23. P. Kidkhunthod, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, (2017)

  24. G. Popov, M. Greenblatt, and M. Croft, Phys. Rev. B 67, 1 (2003).

    Google Scholar 

  25. I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, and H. Szymczak, J. Magn. Magn. Mater. 208, 217 (2000).

    Article  CAS  Google Scholar 

  26. L.X. Chen, T. Liu, M.C. Thurnauer, R. Csencsits, and T. Rajh, J. Phys. Chem. B 106, 8539 (2002).

    Article  CAS  Google Scholar 

  27. D. Kim, S. Miyoshi, T. Tsuchiya, and S. Yamaguchi, Chem. Mater. 26, 927 (2014).

    Article  CAS  Google Scholar 

  28. T. Itoh, Y. Idemoto, and H. Imai, J. Solid State Chem. 258, 702 (2018).

    Article  CAS  Google Scholar 

  29. F. Jin, J. Li, Y. Wang, X. Chu, M. Xu, Y. Zhai, Y. Zhang, W. Fang, P. Zou, and T. He, Ceram. Int. 44, 22489 (2018).

    Article  CAS  Google Scholar 

  30. X. Meng, S. Lu, W.W. Yu, Y. Ji, Y. Sui, and M. Wei, Int. J. Hydrogen Energy 43, 4458 (2018).

    Article  CAS  Google Scholar 

  31. S.V. Trukhanov, I.O. Troyanchuk, M. Hervieu, H. Szymczak, and K. Bärner, Phys. Rev. B 66, 1 (2002).

    Article  Google Scholar 

  32. J. Lu, Y.-M. Yin, J. Yin, J. Li, J. Zhao, and Z.-F. Ma, J. Electrochem. Soc. 163, F44 (2016).

    Article  CAS  Google Scholar 

  33. S.J.L. Billinge, R.G. Difrancesco, G.H. Kwei, J.J. Neumeier, and J.D. Thompson, Phys. Rev. Lett. 77, 715 (1996).

    Article  CAS  Google Scholar 

  34. K. Tanwar, D.S. Gyan, S. Bhattacharya, S. Vitta, A. Dwivedi, and T. Maiti, Phys. Rev. B 99, 174105 (2019).

    Article  CAS  Google Scholar 

  35. R. J. D. Tilley, Defects in Solids, (John Wiley and Sons, Inc. 2008)

  36. K. Hoang and M. D. Johannes, J. Phys. Condens. Matter 30, (2018)

Download references

Acknowledgments

This research is financed by the Indonesian Ministry of Research and Higher Education through the Doctorate Dissertation Program. The authors would like to thank the SUT-NANOTEC-SLRI joint research facility for synchrotron utilization, Thailand, for XAS beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suasmoro.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest concerning this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitriana, F., Muniroh, M., Zainuri, M. et al. XRD, XANES, and Electrical Conductivity Analysis of La- and Zr-Doped Ba0.5Sr0.5Fe0.9Cu0.1O3-δ Suitable for IT-SOFC Cathodes. J. Electron. Mater. 50, 5838–5845 (2021). https://doi.org/10.1007/s11664-021-09110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09110-4

Keywords

Navigation