Skip to main content
Log in

Dielectric Properties and DC Bias Characteristics of BaTi1-mZrmO3-x mol.% MgO-4.5 mol.% Gd2O3-2 mol.% SiO2 Ceramics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, BaTi1-mZrmO3-4.5 mol.% Gd2O3-2.0 mol.% SiO2 ceramics with different Zr/Ti ratios and MgO contents were prepared via solid-state reaction. The MgO addition decreased the densification temperatures of the ceramics and increased the second phase Ba2GdZrO5.5 content. The temperature coefficient of capacitance curves of the ceramics had an almost linear variation with temperature, with negative temperature coefficients. With the increase of the Zr4+/Ti4+ ratio and MgO content, the temperature coefficient of capacitance rotated counter clockwise due to the lower Tm temperature, and a smaller tan δ and a higher electrical resistance were obtained at room temperature. The Zr4+ ion replacement and MgO addition reduced the \({\text{Ti}}^\prime_{{\text{Ti}}}\) concentrations, and therefore, lessened the hopping conduction between Ti4+ and Ti3+ ions, while excess MgO produced \({V_O^{ \bullet \bullet }}\) and had an opposing effect. Additionally, larger amounts of MgO led to smaller grain sizes, and thus, more insulating grain boundaries. The change in the dielectric constant with the bias field, a typical nonlinear dielectric behavior, decreased with increasing MgO content and Zr4+/Ti4+ ratio. For BaTi0.70Zr0.30O3 ceramics with additives of 6 mol.% MgO, 4.5 mol.% Gd2O3, and 2 mol.% SiO2, the dielectric constant changed by a minimum value of 0.37% under a bias of 2.5 kV/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Hong, T.H. Lee, J.M. Suh, S.H. Yoon, and H.W. Jang, J. Mater. Chem. C 7, 9782 (2019).

    Article  CAS  Google Scholar 

  2. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, and F. Zhang, J. Phys. Chem. Solids 114, 220 (2018).

    Article  CAS  Google Scholar 

  3. B. Guo, P. Liu, X. Cui, and Y. Song, J. Alloys Compd. 740, 1108 (2018).

    Article  CAS  Google Scholar 

  4. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, and F. Zhang, J. Alloys Compd. 682, 594 (2016).

    Article  CAS  Google Scholar 

  5. Q. Luo, X. Li, Z. Yao, L. Zhang, J. Xiea, H. Hao, M. Cao, A. Manan, and H. Liu, Ceram. Int. 44, 5304 (2018).

    Article  CAS  Google Scholar 

  6. T. Tsurumi, M. Shono, H. Kakemoto, S. Wada, K. Saito, and H. Chazono, J. Electroceramics 21, 17 (2008).

    Article  CAS  Google Scholar 

  7. M. Tamura, S. Takagi, D. Sakurai, S. Aman, Y. Kamada, Dielectric ceramic composition and electronic component. US 8,450,230 B2 (2013).

  8. J. Zhao, L. Li, Y. Wang, and Z. Gui, Mater. Sci. Eng. B-Adv. 99, 207 (2003).

    Article  Google Scholar 

  9. D.W. Hahn, J.O. Hong, and Y.H. Han, Jpn. J. Appl. Phys. 47, 5526 (2008).

    Article  CAS  Google Scholar 

  10. G. Yang, Z. Yue, Z. Gui, and L. Li, J. Appl. Phys. 104, 074115 (2008).

    Article  Google Scholar 

  11. G. Yang, Z. Yue, J. Zhao, H. Wen, X. Wang, and L. Li, J. Phys. D 39, 3702 (2006).

    Article  CAS  Google Scholar 

  12. Z. Yue, J. Zhao, G. Yang, and L. Li, Ferroelectr. 401, 56 (2010).

    Article  CAS  Google Scholar 

  13. T. Tsurumi, Y. Yamamoto, H. Kakemoto, and S. Wada, J. Mater. Res. 17, 755 (2002).

    Article  CAS  Google Scholar 

  14. J.Q. Zhao, L.T. Li, T. Li, Z.L. Gui, and Y.C. Zhang, Key Eng. Mater. 224–226, 59 (2002).

    Article  Google Scholar 

  15. R. Liang, X.L. Dong, Y. Chen, F. Cao, and Y.L. Wang, Ceram. Int. 33, 957 (2007).

    Article  CAS  Google Scholar 

  16. C. Mao, S. Yan, C. Yao, F. Cao, G. Wang, X. Dong, and X. Men, Mater. Res. Express. 4, 016302 (2017).

    Article  Google Scholar 

  17. C. Zhu, X. Wang, Q. Zhao, Z. Cai, Z. Cen, and L. Li, J. Eur. Ceram. Soc. 39, 1142 (2019).

    Article  CAS  Google Scholar 

  18. H. Gong, X. Wang, S. Zhang, H. Wen, and L. Li, J. Eur. Ceram. Soc. 34, 1733 (2014).

    Article  CAS  Google Scholar 

  19. D. Zhan, Q. Xu, D. Huang, H.J. Sun, F. Gao, and F. Zhang, J. Electron. Mater. 46, 4503 (2017).

    Article  CAS  Google Scholar 

  20. Y. Zhang, Y. Li, H. Zhu, Z. Fu, and Q. Zhang, J. Mater. Sci. Mater. Electron. 27, 9572 (2016).

    Article  CAS  Google Scholar 

  21. X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, and R. Perez, Mater. Chem. Phys. 125, 493 (2011).

    Article  CAS  Google Scholar 

  22. H. Gong, X. Wang, Q. Zhao, and L. Li, J. Mater. Sci. 50, 6898 (2015).

    Article  CAS  Google Scholar 

  23. R.D. Shannon, Acta Crystallogr. A A32, 751 (1976).

    Article  CAS  Google Scholar 

  24. L. Santos-Gómez, L. León-Reina, J.M. Porras-Vázquez, E.R. Losilla, and D. Marrero-López, Solid State Ion. 239, 1 (2013).

    Article  Google Scholar 

  25. F.A. Kröger, and H.J. Vink, Solid State Phys. 3, 307 (1956).

    Article  Google Scholar 

  26. M.A. Alam, L. Zuga, and M.G. Pecht, Ceram. Int. 38, 6091 (2012).

    Article  CAS  Google Scholar 

  27. Y. Tsur, A. Hitomi, I. Scrymgeour, and C.A. Ran, Jpn. J. Appl. Phys. 40, 255 (2001).

    Article  CAS  Google Scholar 

  28. Y. Sakabe, Y. Hamaji, H. Sano, and N. Wada, Jpn. J. Appl. Phys. 41, 5668 (2002).

    Article  CAS  Google Scholar 

  29. S.H. Yoon, M.H. Hong, J.O. Hong, Y.T. Kim, and K.H. Hur, J. Appl. Phys. 102, 054105 (2007).

    Article  Google Scholar 

  30. L. Li, R. Guo, P. Zhang, J. Zhao, and H. Wang, J. Rare Earths 25, 151 (2007).

    Article  Google Scholar 

  31. S. Wang, S. Zhang, X. Zhou, B. Li, and Z. Chen, Mater. Lett. 59, 2457 (2005).

    Article  CAS  Google Scholar 

  32. M.A. Gomes, A.S. Lima, K.I.B. Eguiluz, and G.R. Salazar-Banda, J. Mater. Sci. 51, 4709 (2016).

    Article  CAS  Google Scholar 

  33. X. Chou, J. Zhai, H. Jiang, and X. Yao, J. Appl. Phys. 182, 084106 (2007).

    Article  Google Scholar 

  34. J. Jeong, and Y.H. Han, Phys. Chem. Chem Phys. 5, 2264 (2003).

    Article  CAS  Google Scholar 

  35. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, and T. Okuda, J. Eur. Ceram. Soc. 19, 1043 (1999).

    Article  CAS  Google Scholar 

  36. Electrical Industry Alliance (EIA), World Capacitor Trade Statistics (WCTA), 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sea-Fue Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SF., Hsu, YF., Chang, CW. et al. Dielectric Properties and DC Bias Characteristics of BaTi1-mZrmO3-x mol.% MgO-4.5 mol.% Gd2O3-2 mol.% SiO2 Ceramics. J. Electron. Mater. 50, 5946–5954 (2021). https://doi.org/10.1007/s11664-021-09103-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09103-3

Keywords

Navigation