Skip to main content
Log in

Micro-Spatial Hydrothermal Preparation of Nitrogen-doped Carbon/NiCo2S4 Electrode Material for Supercapacitors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Reasonable combination of carbon and pseudocapacitive material in a composite electrode can produce a high-performance supercapacitor. However, the nano-structured pseudocapacitive materials tend to assemble randomly into microscale bulky forms during the preparation of composite electrode materials, which suffer from a low specific surface area and a mechanically weak structure, resulting in poor electrochemical performance. In this article, a nitrogen-doped carbon/NiCo2S4 electrode material was prepared by micro-spatial hydrothermal reaction in the multicellular microstructure of auricularia. The micro-space-multicellular microstructure of auricularia can provide a huge and efficient nucleation center of NiCo2S4 nanomaterials during the hydrothermal reaction. The morphology of nitrogen-doped carbon/NiCo2S4 electrode material can be effectively controlled by changing the amount of metal ions. The stacked NiCo2S4 nanoparticles of the NC/NiCo2S4-6 electrode material exhibit a network-like structure to a certain extent. The maximum mass specific capacitance of the NC/NiCo2S4-6 electrode material is about 1131 F g−1 at a current density of 0.25 A g−1. There is 81.5% retention of its initial capacitance after 10,000 cycles.

Graphic Abstract

The NC/NiCo2S4 electrode material, prepared by micro-spatial hydrothermal reaction in the multicellular microstructure of auricularia, exhibits good electrochemical cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5

Similar content being viewed by others

References

  1. A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).

    Article  CAS  Google Scholar 

  2. G.D. Nie, Y. Zhu, D. Tian, and C. Wang, Chem. Res. Chin. Univ. 39, 1349 (2018).

    CAS  Google Scholar 

  3. K. Poonam Sharma, A. Arora, and S.K. Tripathi, J. Energy Storage 21, 801 (2019).

    Article  Google Scholar 

  4. Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, and S.H. Jiang, J. Mater. Sci. 56, 173 (2021).

    Article  CAS  Google Scholar 

  5. G.P. Wang, L. Zhang, and J.J. Zhang, Chem. Soc .Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  6. L.L. Zhang, and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  CAS  Google Scholar 

  7. Z.N. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).

    Article  CAS  Google Scholar 

  8. C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, and J.J. Zhang, Chem. Soc. Rev. 44, 7484 (2015).

    Article  CAS  Google Scholar 

  9. J.B. Wu, R.Q. Guo, X.H. Huang, and Y. Lin, J. Power Sources. 243, 317 (2013).

    Article  CAS  Google Scholar 

  10. Q. Xiong, C. Zheng, H. Chi, J. Zhang, and Z. Ji, Nanotechnology 28, 055405 (2017).

    Article  CAS  Google Scholar 

  11. Q. Guo, N. Chen, and Qu. Liangti, Carbon Energy. 2, 54 (2020).

    Article  Google Scholar 

  12. X.H. Zheng, L. Yao, Y.P. Qiu, S.R. Wang, and K. Zhang, ACS Appl. Energy Mater. 2, 4335 (2019).

    Article  CAS  Google Scholar 

  13. K. Wang, H.P. Wu, Y.N. Meng, and Z.X. Wei, Small 10, 14 (2014).

    Article  CAS  Google Scholar 

  14. J.L. Ge, G. Fan, Y. Si, J.X. He, H.Y. Kim, B. Ding, S.S. Al-Deyab, M. El-Newehy, and J.Y. Yu, Nanoscale 8, 2195 (2016).

    Article  CAS  Google Scholar 

  15. N. Jabeen, A. Hussain, Q.Y. Xia, S. Sun, J.W. Zhu, and H. Xia, Adv. Mater. 29, 1700804 (2017).

    Article  CAS  Google Scholar 

  16. T.F. Yi, J.J. Pan, T.T. Wei, Y.W. Li, and G.Z. Cao, Nano Today. 33, 100894 (2020).

    Article  CAS  Google Scholar 

  17. S.H. Zhao, Z.B. Yang, W.W. Xu, Q.Y. Zhang, X.M. Zhao, and X. Wen, Electrochim. Acta 297, 334 (2019).

    Article  CAS  Google Scholar 

  18. Z.H. Yang, X. Zhu, K. Wang, G. Ma, H. Cheng, and F.F. Xu, Appl. Surf. Sci. 347, 690 (2015).

    Article  CAS  Google Scholar 

  19. F. Li, R.C. Xu, Y.M. Li, F. Liang, D.F. Zhang, W.F. Fu, and X.J. Lv, Carbon 145, 521 (2019).

    Article  CAS  Google Scholar 

  20. Y.F. Yuan, L.W. Ye, D. Zhang, F. Chen, M. Zhu, L.N. Wang, S.M. Yin, G.S. Cai, and S.Y. Guo, Electrochim. Acta 299, 289 (2019).

    Article  CAS  Google Scholar 

  21. Y. Wu, Y.F. Yuan, J.Y. Xiang, S.M. Yin, and S.Y. Guo, Polyhedron 170, 101 (2019).

    Article  CAS  Google Scholar 

  22. X.F. Chen, Y. Huang, K.C. Zhang, X.S. Feng, and S.P. Li, J. Alloys Compd. 686, 905 (2016).

    Article  CAS  Google Scholar 

  23. X.H. Xiong, G. Waller, D. Ding, D.C. Chen, B. Rainwater, B.T. Zhao, Z.X. Wang, and M.L. Liu, Nano Energy 16, 71 (2015).

    Article  CAS  Google Scholar 

  24. Z.P. Ma, G.J. Shao, Y.Q. Fan, G.L. Wang, J.J. Song, and D.J. Shen, ACS Appl. Mater. Interfaces. 8, 9050 (2016).

    Article  CAS  Google Scholar 

  25. Y.F. Tang, S.J. Chen, S.C. Mu, T. Chen, Y.Q. Qiao, S.X. Yu, and F.N. Gao, ACS Appl. Mater. Interfaces. 8, 9721 (2016).

    Article  CAS  Google Scholar 

  26. B.X. Li, Z. Tian, H.J. Li, Z.W. Yang, Y.Z. Wang, and X.M. Wang, Electrochim. Acta 314, 32 (2019).

    Article  CAS  Google Scholar 

  27. Y.P. Liu, Z.L. Li, L. Yao, S.M. Chen, P.X. Zhang, and L.B. Deng, Chem. Eng. J. 366, 550 (2019).

    Article  CAS  Google Scholar 

  28. X.R. Han, Q. Chen, H. Zhang, Y.H. Ni, and L. Zhang, Chem. Eng. J. 368, 513 (2019).

    Article  CAS  Google Scholar 

  29. J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, and S. Wang, Nano Lett. 14, 831 (2014).

    Article  CAS  Google Scholar 

  30. H.B. Zhang, H. Li, Z.P. Sun, and D.Z. Jia, J. Power Sources. 439, 227082 (2019).

    Article  CAS  Google Scholar 

  31. F. Lu, M. Zhou, W.R. Li, Q.H. Weng, C.L. Li, Y.M. Xue, X.F. Jiang, X.H. Zeng, Y. Bando, and D. Golberg, Nano Energy 26, 313 (2016).

    Article  CAS  Google Scholar 

  32. Y.R. Zhu, X.B. Ji, Z.B. Wu, and Y. Liu, Electrochim. Acta 186, 562 (2015).

    Article  CAS  Google Scholar 

  33. W.W. Liu, J. Zhang, Z.Y. Bai, G.P. Jiang, M. Li, K. Feng, L. Yang, Y.L. Ding, T.W. Yu, Z.W. Chen, and A.P. Yu, Adv. Funct. Mater. 28, 1706675 (2018).

    Article  CAS  Google Scholar 

  34. L.L. Jiang, L.Z. Sheng, X. Chen, T. Wei, and Z.J. Fan, J. Mater. Chem. A Mater. 4, 11388 (2016).

    Article  CAS  Google Scholar 

  35. H. Zhu, X.L. Wang, F. Yang, and X.R. Yang, Adv. Mater. 23, 2745 (2011).

    Article  CAS  Google Scholar 

  36. M. Govindasamy, S. Shanthi, E. Elaiyappillai, S.F. Wang, P.M. Johnson, H. Ikeda, Y. Hayakawa, S. Ponnusamy, and C. Muthamizhchelvan, Electrochim. Acta 293, 328 (2019).

    Article  CAS  Google Scholar 

  37. Y. Xiao, Y. Lei, B. Zheng, Gu. Li, Y. Wang, and D. Xiao, RSC Adv. 5, 21604 (2015).

    Article  CAS  Google Scholar 

  38. T. Yang, R. Li, Z. Li, Gu. Zhiguo, G. Wang, and J. Liu, Electrochim. Acta 211, 59 (2016).

    Article  CAS  Google Scholar 

  39. Y. Song, Z. Chen, Y. Li, Q. Wang, F. Fang, Y.-N. Zhou, Hu. Linfeng, and D. Sun, J. Mater. Chem. A Mater. 5, 9022 (2017).

    Article  CAS  Google Scholar 

  40. L. Estevez, V. Prabhakaran, A.L. Garcia, Y. Shin, J. Tao, A.M. Schwarz, J. Darsell, P. Bhattacharya, V. Shutthanandan, and J.-G. Zhang, ACS Nano 11, 11047 (2017).

    Article  CAS  Google Scholar 

  41. J. Zhang, X. Wang, G. Qi, B. Li, Z. Song, H. Jiang, X. Zhang, and J. Qiao, Carbon 96, 864 (2016).

    Article  CAS  Google Scholar 

  42. Hu. Lintong, J. Hou, Y. Ma, H. Li, and T. Zhai, J. Mater. Chem. A Mater. 4, 15006 (2016).

    Article  CAS  Google Scholar 

  43. L. Hao, L.F. Shen, J. Wang, Y.L. Xu, and X.G. Zhang, RSC Adv. 6, 9950 (2016).

    Article  CAS  Google Scholar 

  44. Y. Li, F.F. An, H.R. Wu, S.M. Zhu, C.Y.Z. Lin, M.D. Xia, K. Xue, D. Zhang, and K. Lian, J. Power Sources. 427, 138 (2019).

    Article  CAS  Google Scholar 

  45. S.G. Mohamed, I. Hussain, and J.J. Shim, Nanoscale 10, 6620 (2018).

    Article  CAS  Google Scholar 

  46. Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, and H.L. Li, J. Power Sources. 307, 391 (2016).

    Article  CAS  Google Scholar 

  47. J. Zhao, H.W. Lai, Z.Y. Lyu, Y.F. Jiang, K. Xie, X.Z. Wang, Q. Wu, L.J. Yang, Z. Jin, Y.W. Ma, J. Liu, and Z. Hu, Adv. Mater. 27, 3541 (2015).

    Article  CAS  Google Scholar 

  48. W.Q. Tian, Q.M. Gao, L.M. Zhang, C.X. Yang, Z.Y. Li, Y.L. Tan, W.W. Qian, and H. Zhang, J. Mater. Chem. A Mater. 4, 8690 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was kindly supplied by grants from National Natural Science Foundation of China (no. 21601162) and the Special project of basic research for key scientific research projects of colleges and universities in Henan Province (20ZX008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kezheng Gao or Lizhen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 901 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Q., Feng, Z., Gao, K. et al. Micro-Spatial Hydrothermal Preparation of Nitrogen-doped Carbon/NiCo2S4 Electrode Material for Supercapacitors. Journal of Elec Materi 50, 4915–4923 (2021). https://doi.org/10.1007/s11664-021-09042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09042-z

Keywords

Navigation