Skip to main content
Log in

Role of Reduced Graphene Oxide-Gold Nanoparticle Composites on Au/Au-RGO/p-Si/Al Structure Depending on Sample Temperature

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to understand the current conduction mechanism in metal-semiconductor rectifier junctions, it is important to take electrical measurements depending on the sample temperature. Therefore, the current-voltage (I-V) measurements of the Au/Au-RGO/p-Si/Al structure were taken in the temperature range of 80–300 K by steps of 20 K. In the fabrication of the Au/Au-RGO/p-Si/Al structure, p-type Si was used as a base material. First, an ohmic contact was made by evaporating Al metal on the polished surface of the chemically cleaned p-Si and annealing in a nitrogen atmosphere at 580°C. Afterwards, mercaptoundecanoic acid-capped Au nanoparticles assembled on reduced graphene oxide (RGO), namely Au-RGO nanocomposite, was grown as an interfacial layer on the p-Si semiconductor substrate by the spin coating technique. The morphological and optical properties of the Au-RGO nanocomposite thin film were examined by atomic force microscopy (AFM) and Raman spectroscopy measurements. The I-V measurements of the Au/Au-RGO/p-Si/Al structure were taken depending on sample temperature and the basic electrical parameters such as ideality factor (n), barrier height (Φb) and dynamic resistance were calculated by means of thermionic emission method. It was observed that the ideality factor decreased and the barrier height increased with increasing sample temperature. The results were interpreted with the barrier inhomogeneity model and using Richardson plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  1. S.S. Li, Semiconductor Physical Electronics, 2nd ed., (New York: Springer, 2006).

    Book  Google Scholar 

  2. S.M. Sze, Physics of Semiconductor Devices, 2nd ed., (New York: Wiley, 1981).

    Google Scholar 

  3. U.K. Mishra, and J. Singh, Semiconductor Device Physics and Design (Netherlands: Springer, 2008).

    Google Scholar 

  4. K. Hess, Advanced Theory of Semiconductor Devices (New York: Wiley, 2000).

    Google Scholar 

  5. E.H. Rhoderick, and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed., (Oxford: Clerandon, 1988).

    Google Scholar 

  6. J.H. Werner, and H.H. Güttler, J. Appl. Phys. 73, 1315 (1993).

    Article  CAS  Google Scholar 

  7. J.H. Werner, and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  CAS  Google Scholar 

  8. M. Sağlam, A. Ateş, M.A. Yıldırım, B. Güzeldir, and A. Astam, Curr. Appl. Phys. 10, 513 (2010).

    Article  Google Scholar 

  9. A.S. Kavasoğlu, F. Yakuphanoğlu, N. Kavasoğlu, O. Pakma, Ö. Birgi, and Ş Oktik, J. Alloys Compd. 492, 421 (2010).

    Article  CAS  Google Scholar 

  10. S. Zeyrek, M.M. Bülbül, Ş Altındal, M.C. Baykul, and H. Yüzer, Braz. J. Phys. 38, 591 (2008).

    CAS  Google Scholar 

  11. İ Dökme, Microelectron. Reliab. 51, 360 (2011).

    Article  CAS  Google Scholar 

  12. A. Türüt, D.E. Yıldız, A. Karabulut, and İ Orak, J. Mater. Sci.: Mater. Electron. 4, 7839 (2020).

    Google Scholar 

  13. İ Orak, Z. Çaldiran, M. Bakir, O. Çifçi, and A. Koçyiğit, J. Electron. Mater. 49, 402 (2020).

    Article  CAS  Google Scholar 

  14. A. Karabulut, İ Orak, M. Çağlar, and A. Türüt, Surf. Rev. Lett. 26, 1950045 (2019).

    Article  CAS  Google Scholar 

  15. K. Ejderha, İ Orak, S. Duman, and A. Türüt, J. Electron. Mater. 47, 3502 (2018).

    Article  CAS  Google Scholar 

  16. A. Kocyigit, İ Orak, Z. Çaldıran, and A. Türüt, J. Mater. Sci.: Mater. Electron. 28, 17177 (2017).

    CAS  Google Scholar 

  17. G. Turgut, S. Duman, and F.Ş Özcelik, Metall. and Mater. Trans. A. 48A, 3137 (2017).

    Article  CAS  Google Scholar 

  18. A. Güzel, S. Duman, N. Yıldırım, and A. Türüt, J. Electron. Mater. 45, 2808 (2016).

    Article  CAS  Google Scholar 

  19. A.F. Özdemir, Z. Kotan, D.A. Aldemir, and Ş Altındal, Eur. Phys. J. Appl. Phys. 46, 20402 (2009).

    Article  CAS  Google Scholar 

  20. G. Cebisli, S. Asubay, and Y.S. Ocak, J. Ovonic Res. 14, 405 (2018).

    CAS  Google Scholar 

  21. B. Güzeldir, M. Sağlam, and A. Ateş, J. Alloys Compd. 506, 388 (2010).

    Article  CAS  Google Scholar 

  22. D.A. Aldemir, A. Kökce, and A.F. Özdemir, Microelectron. Eng. 98, 6 (2012).

    Article  CAS  Google Scholar 

  23. T. Göksu, N. Yıldırım, H. Korkut, A.F. Özdemir, A. Türüt, and A. Kökçe, Microelectron. Eng. 87, 1781 (2010).

    Article  CAS  Google Scholar 

  24. Y.S. Ocak, C. Bozkaplan, H.S. Ahmed, A. Tombak, M.F. Genisel, and S. Asubay, Optik 142, 644 (2017).

    Article  CAS  Google Scholar 

  25. A.R. Deniz, Z. Çaldıran, Ö. Metin, K. Meral, and Ş Aydoğan, J. Colloid Interface Sci. 473, 172 (2016).

    Article  CAS  Google Scholar 

  26. Ş Karataş, and Z. Kara, Microelectron. Reliab. 51, 2205 (2011).

    Article  CAS  Google Scholar 

  27. C. Çoşkun, Ş Aydoğan, and H. Efeoğlu, Semicond. Sci. Technol. 19, 242 (2004).

    Article  CAS  Google Scholar 

  28. K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, and Ş Altındal, J. Mater. Sci.: Mater. Electron. 28, 3987 (2017).

    CAS  Google Scholar 

  29. H.C. Card, and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  CAS  Google Scholar 

  30. S. Altındal, B. Sarı, H.I. Ünal, and N. Yavaş, J. Appl. Polym. Sci. 113, 2955 (2009).

    Article  CAS  Google Scholar 

  31. H.H. Gullu, and D.E. Yildiz, J. Mater. Sci.: Mater. Electron. 30, 19383 (2019).

    CAS  Google Scholar 

  32. A. Fritah, L. Dehimi, F. Pezzimenti, A. Saadoune, and B. Abay, J. Electron. Mater. 48, 3692 (2019).

    Article  CAS  Google Scholar 

  33. F.E. Cimilli, M. Sağlam, H. Efeoğlu, and A. Türüt, Phys. B 404, 1558 (2009).

    Article  CAS  Google Scholar 

  34. S.N. Alam, N. Sharma, and L. Kumar, Graphene 6, 1 (2017).

    Article  CAS  Google Scholar 

  35. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, J. Mater. Chem. C 20, 5817 (2010).

    Article  CAS  Google Scholar 

  36. D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan et al., J. Mater. Chem. C 2, 925 (2014).

    Article  CAS  Google Scholar 

  37. P. Sutter, Nat. Mater. 8, 171 (2009).

    Article  CAS  Google Scholar 

  38. T.A. Pham, J.S. Kim, and Y.T. Jeong, Colloids Surf., A 384, 543 (2011).

    Article  CAS  Google Scholar 

  39. C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou, and Y. Cui, PLoS ONE 10, e0144842 (2015).

    Article  CAS  Google Scholar 

  40. F.W. Low, C.W. Lai, and S.B.A. Hamid, Ceram. Int. 41, 5798 (2015).

    Article  CAS  Google Scholar 

  41. H. Ahmad, M. Tajdidzadeh, K. Thambiratnam, and M. Yasin, Laser Phys. 28, 066204 (2018).

    Article  CAS  Google Scholar 

  42. H.V. Kumar, S.J. Woltornist, and D.H. Adamson, Carbon 98, 491 (2016).

    Article  CAS  Google Scholar 

  43. P.C. Ooi, M.A.S.M. Haniff, M.F.M.R. Wee, C.F. Dee, B.T. Goh, M.A. Mohamed, and B.Y. Majlis, Carbon 124, 547 (2017).

    Article  CAS  Google Scholar 

  44. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman, Journal of the Chemical SocietyChem. Commun. 7, 801 (1994).

    Article  Google Scholar 

  45. A. Jafarizad, A. Aghanejad, M. Sevim, Ö. Metin, J. Barar, Y. Omidi, and D. Ekinci, Chemistry Select 2, 6663 (2017).

    CAS  Google Scholar 

  46. N. Bahar, and D. Ekinci, Electrochim. Acta 337, 135844 (2020).

    Article  CAS  Google Scholar 

  47. F. Mao, U. Wiklund, A.M. Andersson, and U. Jansson, J. Mater. Sci. 50, 6518 (2015).

    Article  CAS  Google Scholar 

  48. S. Amini, H. Kalaantari, J. Garay, A.A. Balandin, and R. Abbaschian, J. Mater. Sci. 46, 6255 (2011).

    Article  CAS  Google Scholar 

  49. R. Beams, L.G. Cançado, and L. Novotny, J. Phys.: Condens. Matter 27, 083002 (2015).

    CAS  Google Scholar 

  50. Y. Xue, L. Zhu, H. Chen, J. Qu, and L. Dai, Carbon 92, 305 (2015).

    Article  CAS  Google Scholar 

  51. A.G. İmer, M. Gülcan, M. Çelebi, A. Tombak, and Y.S. Ocak, J. Mater. Sci.: Mater. Electron. 31, 2111 (2020).

    Google Scholar 

  52. M.H. Rashid, Microelectronic Circuits: Analysis and Design, 2nd ed., (Stamford.: Cengage Learning, 2011).

    Google Scholar 

  53. R. Boylestad, and L. Nashelsky, Electronic Devices and Circuit Theory, 7th ed., (Columbus, Ohio: Prentice Hall, 2000).

    Google Scholar 

  54. A. Karabulut, H. Efeoğlu, and A. Türüt, J. Semicond. 38, 054003 (2017).

    Article  CAS  Google Scholar 

  55. Y. Saraç, S.Ş Şener, A. Baltakesmez, B. Güzeldir, and M. Sağlam, J. Alloy. Compd. 824, 153899 (2020).

    Article  CAS  Google Scholar 

  56. M. Yıldırım, A. Kocyigit, A. Sarılmaz, and F. Özel, J. Mater. Sci.: Mater. Electron. 30, 332 (2019).

    Google Scholar 

  57. B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S.B. Krupanidhi, AIP Adv. 5, 037130 (2015).

    Article  CAS  Google Scholar 

  58. I. Orak, A. Koçyiğit, and A. Türüt, J. Alloys Compd. 691, 873 (2017).

    Article  CAS  Google Scholar 

  59. Ş Karataş, Microelectron. Eng. 87, 1935 (2010).

    Article  CAS  Google Scholar 

  60. M. Gülnahar, T. Karaçali, and H. Efeoğlu, Electrochim. Acta 168, 41 (2015).

    Article  CAS  Google Scholar 

  61. M.E. Aydın, and A. Türüt, Microelectron. Eng. 84, 2875 (2007).

    Article  CAS  Google Scholar 

  62. Ç. Bilkan, S. Zeyrek, S.E. San, and Ş Altındal, Mater. Sci. Semicond. Process. 32, 137 (2015).

    Article  CAS  Google Scholar 

  63. Ş Altındal, H. Kanbur, D.E. Yıldız, and M. Parlak, Appl. Surf. Sci. 253, 5056 (2007).

    Article  CAS  Google Scholar 

  64. M. Benhaliliba, J. Fundam. Appl. Sci. 9, 605 (2017).

    Article  CAS  Google Scholar 

  65. S. Ashok, and K. Giewont, IEEE Electron. Device Lett. 6, 462 (1985).

    Article  Google Scholar 

  66. C. Temirci, B. Batı, M. Sağlam, and A. Türüt, Appl. Surf. Sci. 172, 1 (2001).

    Article  Google Scholar 

  67. M. Sağlam, M. Biber, M. Çakar, and A. Türüt, Appl. Surf. Sci. 230, 404 (2004).

    Article  CAS  Google Scholar 

  68. S.B.K. Aydın, D.E. Yıldız, H.K. Çavuş, and R. Şahingöz, Bull. Mater. Sci. 37, 1563 (2014).

    Article  CAS  Google Scholar 

  69. İH. Taşdemir, O. Vural, and İ Dökme, Philos. Mag. 96, 1684 (2016).

    Article  CAS  Google Scholar 

  70. T. Kılıçoğlu, Thin Solid Films 516, 967 (2008).

    Article  CAS  Google Scholar 

  71. M. Sağlam, and A. Türüt, J. Appl. Polym. Sci. 101, 2313 (2006).

    Article  CAS  Google Scholar 

  72. A. Ateş, M. Sağlam, B. Güzeldir, M.A. Yıldırım, and A. Astam, J. Optoelectron. Adv. Mater. 12, 1466 (2010).

    Google Scholar 

  73. E. Şenarslan, B. Güzeldir, and M. Sağlam, J. Phys. Chem. Solids 146, 109564 (2020).

    Article  CAS  Google Scholar 

  74. A. Türüt, N. Yalçın, and M. Sağlam, Solid State Electron. 35, 835 (1992).

    Article  Google Scholar 

  75. S. Mahato, D. Biswas, L.G. Gerling, C. Voz, and J. Puigdollers, AIP Adv. 7, 085313 (2017).

    Article  CAS  Google Scholar 

  76. M.A. Yıldırım, B. Güzeldir, A. Ateş, and M. Sağlam, Microelectron. Eng. 88, 3075 (2011).

    Article  CAS  Google Scholar 

  77. R.T. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  CAS  Google Scholar 

  78. S. Chand, and J. Kumar, Semicond. Sci. Technol. 11, 1203 (1996).

    Article  CAS  Google Scholar 

  79. S. Chand, and J. Kumar, Semicond. Sci. Technol. 10, 1680 (1995).

    Article  CAS  Google Scholar 

  80. N. Yıldırım, K. Ejderha, and A. Türüt, J. Appl. Phys. 108, 114506 (2010).

    Article  CAS  Google Scholar 

  81. J.H. Werner, and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  CAS  Google Scholar 

  82. I. Jyothi, H.D. Yang, K.H. Shim, V. Janardhanam, S.M. Kang, H. Hong, and C.J. Choi, Mater. Trans. 54, 1655 (2013).

    Article  CAS  Google Scholar 

  83. E. Marıl, Ş Altındal, A. Kaya, S. Koçyiğit, and İ Uslu, Philos. Mag. 95, 1049 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS: Conceptualization, Visualization, Investigation, Writing-review & editing, BG: Conceptualization, Visualization, Investigation, Methodology, AT: Conceptualization, Methodology, Investigation, DE: Methodology, Investigation.

Corresponding author

Correspondence to M. Sağlam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sağlam, M., Güzeldir, B., Türüt, A. et al. Role of Reduced Graphene Oxide-Gold Nanoparticle Composites on Au/Au-RGO/p-Si/Al Structure Depending on Sample Temperature. Journal of Elec Materi 50, 4752–4761 (2021). https://doi.org/10.1007/s11664-021-09017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09017-0

Keywords

Navigation