Skip to main content
Log in

Investigating the Effect of Shading Mask Aperture Area on IV Curve Characterization of Nanostructured Photoanode of Dye-Sensitized Solar Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

IV curve measurement under illumination has been extensively employed for the photovoltaic characterization of dye-sensitized solar cells (DSSCs) in last three decades. Usually, a shading mask with an aperture is used to prevent the overestimation of short-circuit current density (Isc) due to an edge effect. A recent investigation showed that using a shading mask, however, leads to underestimation of open circuit voltage (Voc) and overestimation of fill factor (FF) in planar perovskite solar cells. In the present work, the effect of shading mask aperture size on photovoltaic parameters was investigated in DSSCs. The obtained results confirmed Kiermasch’s observations. It was observed that Isc is independent of the shading mask aperture size. Utilizing a shading mask with a smaller aperture size compared to the DSSC active area decreased Voc, but increased FF. As a result, smaller aperture size led to higher power conversion efficiency. Although using a small aperture shading mask for characterization of DSSC gives the correct Isc, it leads to erroneous determination of Voc and Isc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’Regan, and M. Grätzel, Nature 353, 737 (1991).

    CAS  Google Scholar 

  2. N. Tomar, A. Agrawal, V.S. Dhaka, and P.K. Surolia, Sol. Energy 207, 59 (2020).

    Article  CAS  Google Scholar 

  3. S. Alhorani, S. Kumar, M. Genwa, P.L. Meena, in AIP Conference Proceedings 2265, 030632 (2020).

  4. P. Semalti, and S.N. Sharma, J. Nanosci. Nanotechnol. 20, 3647 (2020).

    Article  CAS  Google Scholar 

  5. J.H. Yun, Y.H. Ng, C. Ye, A.J. Mozer, G.G. Wallace, and R. Amal, ACS Appl. Mater. Interfaces 3, 1585 (2011).

    Article  CAS  Google Scholar 

  6. J.H. Yun, L. Wang, R. Amal, and Y.H. Ng, Energies 9, 1030 (2016).

    Article  Google Scholar 

  7. J.H. Yun, A.J. Mozer, P. Wagner, D.L. Offier, R. Amal, and Y.H. Ng, SM&T 24, e00165 (2020).

    CAS  Google Scholar 

  8. M. Planells, A. Abate, D.J. Hollman, S.D. Stranks, V. Bharti, J. Gaur, D. Mohanty, S. Chand, H.J. Snaith, and N. Robertson, J. Mater. Chem. A 1, 6949 (2013).

    Article  CAS  Google Scholar 

  9. J.B. Baxter, and E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005).

    Article  Google Scholar 

  10. C. Longo, A.F. Nogueira, M.-A. De Paoli, and H. Cachet, J. Phys. Chem. B 106, 5925 (2002).

    Article  CAS  Google Scholar 

  11. M. Späth, P.M. Sommeling, J.A.M. van Roosmalen, H.J.P. Smit, N.P.G. van der Burg, D.R. Mahieu, N.J. Bakker, and J.M. Kroon, Prog. Photovoltaics Res. Appl. 11, 207 (2003).

    Article  Google Scholar 

  12. A. Fakharuddin, P.S. Archana, Z. Kalidin, M.M. Yusoff, and R. Jose, RSC Adv. 3, 2683 (2013).

    Article  CAS  Google Scholar 

  13. V.K. Vendra, J. Absher, S.R. Ellis, D.A. Amos, T. Druffel, and M.K. Sunkara, J. Electrochem. Soc. 159, H728 (2012).

    Article  CAS  Google Scholar 

  14. H. McDaniel, N. Fuke, N.S. Makarov, J.M. Pietryga, and V.I. Klimov, Nat. Commun. 4, 2887 (2013).

    Article  Google Scholar 

  15. J. Lee, H. Im, S. Kim, J. Choi, and C. Kim, J. Nanosci. Nanotechnol. 13, 6735 (2013).

    Article  Google Scholar 

  16. N. Koide, and L. Han, Rev. Sci. Instrum. 75, 2828 (2004).

    Article  CAS  Google Scholar 

  17. W. Wang, X. Pan, W. Liu, B. Zhang, H. Chen, X. Fang, J. Yao, and S. Dai, Chem. Commun. 50, 2618 (2014).

    Article  CAS  Google Scholar 

  18. L. Martín-Gomis, E.M. Barea, F. Fernández-Lázaro, J. Bisquert, and Á. Sastre-Santos, J. Porphyrins Phthalocyanines 15, 1004 (2011).

    Article  Google Scholar 

  19. D. Kiermasch, L. Gil-Escrig, H.J. Bolink, and K. Tvingstedt, Joule 3, 16 (2019).

    Article  CAS  Google Scholar 

  20. M. Hočevar, U.O. Krašovec, M. Berginc, G. Dražič, N. Hauptman, and M. Topič, J. Sol-Gel Sci. Technol. 48, 156 (2008).

    Article  Google Scholar 

  21. A. Mashreghi, and M. Ghasemi, Renew. Energy 75, 481 (2015).

    Article  CAS  Google Scholar 

  22. A. Mashreghi, and F. Davoudi, Mater. Sci. Semicond. Process. 26, 669 (2014).

    Article  CAS  Google Scholar 

  23. A. Mashreghi, and F. Davoudi, Mater. Sci. Semicond. Process. 30, 618 (2015).

    Article  CAS  Google Scholar 

  24. M.J. Scott, M. Woodhouse, B.A. Parkinson, and C.M. Elliott, J. Electrochem. Soc. 155, B290 (2008).

    Article  CAS  Google Scholar 

  25. K. Miettunen, J. Halme, A.-M. Visuri, and P. Lund, J. Phys. Chem. C 115, 7019 (2011).

    Article  CAS  Google Scholar 

  26. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595 (2010).

    Article  CAS  Google Scholar 

  27. J. Bisquert, Nanostructured Energy Devices: Equilibrium Concepts and Kinetics, 1st ed., (CRC Press, 2015), pp. 46–47.

    Google Scholar 

  28. S.O. Kasap, Principles of Electronic Materials and Devices, 3rd ed., (McGraw-Hill, 2006), pp. 380–383.

    Google Scholar 

  29. J. Bisquert, and I. Mora-Seró, J. Phys. Chem. Lett. 1, 450 (2010).

    Article  CAS  Google Scholar 

  30. Y. Liu, A. Hagfeldt, X.-R. Xiao, and S.-E. Lindquist, Sol. Energy Mater. Sol. Cells 55, 267 (1998).

    Article  CAS  Google Scholar 

  31. W. Liu, L. Hu, S. Dai, L. Guo, N. Jiang, and D. Kou, Electrochim. Acta 55, 2338 (2010).

    Article  CAS  Google Scholar 

  32. C. Zhang, J. Zhang, Y. Hao, Z. Lin, and C. Zhu, J. Appl. Phys. 110, 064504 (2011).

    Article  Google Scholar 

  33. A. Hinsch, J.M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, and J. Ferber, Prog. Photovolt. Res. Appl. 9, 425 (2001).

    Article  CAS  Google Scholar 

  34. G. Xue, Y. Guo, T. Yu, J. Guan, X. Yu, J. Zhang, J. Liu, and Z. Zou, Int. J. Electrochem. Sci. 7, 1496 (2012).

    CAS  Google Scholar 

  35. N. Heo, Y. Jun, and J.H. Park, Sci. Rep. 3, 01712 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Shiraz University of Technology. The author is grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mashreghi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashreghi, A. Investigating the Effect of Shading Mask Aperture Area on IV Curve Characterization of Nanostructured Photoanode of Dye-Sensitized Solar Cells. Journal of Elec Materi 50, 4456–4461 (2021). https://doi.org/10.1007/s11664-021-08982-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08982-w

Keywords

Navigation