Skip to main content
Log in

Enhanced Low Temperature Thermoelectric Properties by Nano-Inclusion of 2D MoS2 with Fe:ZnO Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Innovative material configurations obtained by incorporating two-dimensional (2D) layers of MoS2 (a two-dimensional material) with Fe doped ZnO (Fe:ZnO) thin films are found to exhibit high thermoelectric properties at lower temperature. The low dimensionality of material (MoS2) is expected to enhance the thermoelectric power factor because of the strong confinement of charge carriers. MoS2 layers have been incorporated in the Fe:ZnO thin film by depositing MoS2 layers over Fe:ZnO thin film and by fabricating the multilayered structure of MoS2 layers with Fe:ZnO. The fabricated structures were characterized for their structural, optical and morphological properties using the available characterization tools. The multilayer configuration of the MoS2 and Fe:ZnO (FZnMFZn) sample was found to exhibit higher values of power factor of 1.06 × 10−3 W/mK2 and figure of merit (ZT) of 3.11 × 10−2 at a very low operating temperature of 300 K. The obtained results highlight the importance of charge confinement in improving the thermoelectric properties of the multilayered structure (FZnMFZn thin film sample) indicating that it is a promising candidate for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077 (2012).

    Article  CAS  Google Scholar 

  2. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  3. L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011).

    Article  CAS  Google Scholar 

  4. Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, and G.J. Snyder, Adv. Mater. 26, 3974 (2014).

    Article  CAS  Google Scholar 

  5. Q. Tan, L.D. Zhao, J.F. Li, C.F. Wu, T.R. Wei, Z.B. Xing, and M.G. Kanatzidis, J. Mater. Chem. A 2, 17302 (2014).

    Article  CAS  Google Scholar 

  6. Y.L. Pei, H. Wu, D. Wu, F. Zheng, and J. He, J. Am. Chem. Soc. 136, 13902 (2014).

    Article  CAS  Google Scholar 

  7. T. Kikkawa, K. Uchida, Y. Shiomi, Z. Qiu, D. Hou, D. Tian, H. Nakayama, X.-F. Jin, E. Saitoh, APS 110 (2013).

  8. T.H. Geballe, and G.W. Hull, Phys. Rev. 94, 1134 (1954).

    Article  CAS  Google Scholar 

  9. T.H. Geballe, and G.W. Hull, Phys. Rev. 98, 940 (1955).

    Article  CAS  Google Scholar 

  10. J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).

    Article  Google Scholar 

  11. P.A. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G.J. Snyder, and L. Chen, Energy Environ. Sci. 10, 183 (2017).

    Article  CAS  Google Scholar 

  12. J.E. Turney, A.J.H. McGaughey, and C.H. Amon, J. Appl. Phys. 107, 024317 (2010).

    Article  CAS  Google Scholar 

  13. C. Jeong, S. Datta, and M. Lundstrom, J. Appl. Phys. 111, 093708 (2012).

    Article  CAS  Google Scholar 

  14. Z. Liang, K. Sasikumar, P. Keblinski, APS 113 (2014).

  15. E. Guilmeau, P. Díaz-Chao, O.I. Lebedev, A. Rečnik, M.C. Schäfer, F. Delorme, F. Giovannelli, M. Košir, and S. Bernik, Inorg. Chem. 56, 480 (2017).

    Article  CAS  Google Scholar 

  16. H. Kim, Z. Wang, M.N. Hedhili, N. Wehbe, and H.N. Alshareef, Chem. Mater. 29, 2794 (2017).

    Article  CAS  Google Scholar 

  17. H. Matsuo, K. Yoshitoku, D. Furuyama, M. Saito, and T. Homma, ECS Trans. 75, 143 (2017).

    Article  CAS  Google Scholar 

  18. C.L. Cramer, W. Li, Z.-H. Jin, J. Wang, K. Ma, and T.B. Holland, Iopsci. Iop. Org 47, 866 (2018).

    CAS  Google Scholar 

  19. D.B. Zhang, H.Z. Li, B.P. Zhang, D.D. Liang, and M. Xia, RSC Adv. 7, 10855 (2017).

    Article  CAS  Google Scholar 

  20. K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S. Yuan Liu, H. Lin, and G. Wang, Ceram. Int. 46, 1494 (2020).

    Article  CAS  Google Scholar 

  21. K. Omri, A. Alyamani, and L. El Mir, J. Mater. Sci. Mater. Electron. 30, 16606 (2019).

    Article  CAS  Google Scholar 

  22. H. S. Ali, A. S. Alghamdi, G. Murtaza, H. S. Arif, W. Naeem, G. Farid, S. Sharif, M. Gul, B. Ashiq, S. A. Shabbir, Mdpi.Com (2019)

  23. D. Bérardan, C. Byl, and N. Dragoe, J. Am. Ceram. Soc. 93, 2352 (2010).

    Article  CAS  Google Scholar 

  24. P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T. Borca-Tasciuc, S.X. Dou, and G. Ramanath, Nano Lett. 11, 4337 (2011).

    Article  CAS  Google Scholar 

  25. P. Mele, S. Saini, H. Honda, K. Matsumoto, K. Miyazaki, H. Hagino, and A. Ichinose, Appl. Phys. Lett. 102, 253903 (2013).

    Article  CAS  Google Scholar 

  26. W. Guan, L. Zhang, C. Wang, and Y. Wang, Mater. Sci. Semicond. Process. 66, 247 (2017).

    Article  CAS  Google Scholar 

  27. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1997).

    Article  CAS  Google Scholar 

  28. X. Liang, ACS Appl. Mater. Interfaces 7, 7927 (2015).

    Article  CAS  Google Scholar 

  29. H. Yamaguchi, Y. Chonan, M. Oda, T. Komiyama, T. Aoyama, and S. Sugiyama, J. Elect. Mater. 40, 723 (2011).

    Article  CAS  Google Scholar 

  30. D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Nano-Micro Lett. 12, 36

  31. T. Tritt, M. S.-M. bulletin, undefined 2006, Thermoelectric materials, phenomena, and applications: a bird’s eye view. Cambridge.Org (2006).

  32. S. Kong, T. Wu, W. Zhuang, P. Jiang, and X. Bao, J. Phys. Chem. B 122, 713 (2018).

    Article  CAS  Google Scholar 

  33. S. Kong, T. Wu, M. Yuan, Z. Huang, Q.L. Meng, Q. Jiang, W. Zhuang, P. Jiang, and X. Bao, J. Mater. Chem. A 5, 2004 (2017).

    Article  CAS  Google Scholar 

  34. S. Kumar, A. Sharma, Y.T. Ho, A. Pandey, M. Tomar, A.K. Kapoor, E.Y. Chang, and V. Gupta, J. Alloys Compd. 835, 155222 (2020).

    Article  CAS  Google Scholar 

  35. A. Da Rosa, Fundamentals of Renewable energy processes (2009).

  36. T. Nian, Z. Wang, and B. Dong, Appl. Phys. Lett. 118, 033103 (2021).

    Article  CAS  Google Scholar 

  37. N. Han, L. Chai, Q. Wang, Y. Tian, P. Deng, and Y. Chen, Sens. Actuat. B Chem. 147, 525 (2010).

    Article  CAS  Google Scholar 

  38. P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, and M. Singh, J. Alloys Compd. 578, 235 (2013).

    Article  CAS  Google Scholar 

  39. T.S. Sahu, and S. Mitra, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  40. Y. Qi, N. Wang, Q. Xu, H. Li, P. Zhou, X. Lu, and G. Zhao, Chem. Commun. 51, 6726 (2015).

    Article  CAS  Google Scholar 

  41. L. Chacko, A. Poyyakkara, V.B.S. Kumar, and P.M. Aneesh, J. Mater. Chem. B 6, 3048 (2018).

    Article  CAS  Google Scholar 

  42. F.K. Shan, and Y.S. Yu, J. Eur. Ceram. Soc. 24, 1869 (2004).

    Article  CAS  Google Scholar 

  43. J. Ryou, Y.S. Kim, K.C. Santosh, and K. Cho, Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  44. P. Mele, D. Narducci, M. Ohta, K. Biswas, J. Morante, Thermoelectric thin films (2019).

  45. K. Hippalgaonkar, Y. Wang, Y. Ye, D.Y. Qiu, H. Zhu, Y. Wang, J. Moore, S.G. Louie, and X. Zhang, Phys. Rev. B 95, 115407 (2017).

    Article  Google Scholar 

  46. P. Mele, S. Saini, A. Tiwari, P.E. Hopkins, K. Miyazaki, A. Ichinose, J. Niemelä, and M. Karppinen, J. Nanosci. Nanotechnol. 17, 1616 (2017).

    Article  CAS  Google Scholar 

  47. C. Cho, M. Culebras, K.L. Wallace, Y. Song, K. Holder, J.H. Hsu, C. Yu, and J.C. Grunlan, Nano Energy 28, 426 (2016).

    Article  CAS  Google Scholar 

  48. P. Gangwar, S. Kumar, and N. Khare, Mater. Res. Express 6, 105062 (2019).

    Article  CAS  Google Scholar 

  49. Z.F. Zhou, G.K. Ren, X. Tan, R. Liu, C. Liu, Y.H. Lin, and C.W. Nan, J. Mater. Chem. A 6, 24128 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Department of Science and technology (DST-SERB) and University of Delhi for the financial support for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Tomar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kumar, S., Jindal, K. et al. Enhanced Low Temperature Thermoelectric Properties by Nano-Inclusion of 2D MoS2 with Fe:ZnO Thin Films. Journal of Elec Materi 50, 4567–4576 (2021). https://doi.org/10.1007/s11664-021-08979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08979-5

Keywords

Navigation