Skip to main content
Log in

Fabrication of Disordered Nanostructures by Nanosphere Lithography and Its Application for Ultrathin Si Wafers

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fabrication of the disordered Si nanostructure arrays with a controlled randomness has gained research interest because the well-controlled disorder can provide more effective light trapping. The parabolic Si nanostructures were made by combining processes of silica self-assembled monolayer deposition and reactive ion etching. We demonstrate that the order of the Si nanostructure arrays can be varied in the nanosphere lithography by blending two different silica nanoparticles of 960 nm and 520 nm in diameter. The order of the Si nanostructure arrays was adjusted by varying the fractions of the small size nanoparticles. The light trapping performances were analyzed by measuring the total reflectances from the textured wafers and also simulated using optical simulations. Furthermore, we incorporated our disordered Si nanostructure arrays on ultrathin Si wafers of a 50-um thickness, and the influence of the disorder on the optical performances was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.-P. Wang, and J.-H. He, Adv. Energy Mater. 7, 1602385 (2017).

    Article  Google Scholar 

  2. J. Oh, H.-C. Yuan, and H.M. Branz, Nat. Nanotechnol. 7, 743 (2012).

    Article  CAS  Google Scholar 

  3. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, Nat. Nanotechnol. 10, 624 (2015).

    Article  CAS  Google Scholar 

  4. M.L. Brongersma, Y. Cui, and S. Fan, Nat. Mater. 13, 451 (2014).

    Article  CAS  Google Scholar 

  5. A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, Opt. Express 21, A295 (2013).

    Article  CAS  Google Scholar 

  6. H.-P. Wang, K.-T. Tsai, K.-Y. Lai, T.-C. Wei, Y.-L. Wang, and J.-H. He, Opt. Express 20, A94 (2012).

    Article  CAS  Google Scholar 

  7. H.-S. Lee, J.M. Choi, B. Jung, J. Kim, J. Song, D.S. Jeong, J.-K. Park, W.M. Kim, D.-K. Lee, T.S. Lee, W.S. Lee, K.-S. Lee, B.-K. Ju, and I. Kim, Sci. Rep. 9, 19736 (2019).

    Article  CAS  Google Scholar 

  8. Z. Yu, A. Raman, and S. Fan, Opt. Express 18, A366 (2010).

    Article  CAS  Google Scholar 

  9. S. Mokkapati, and K.R. Catchpole, J. Appl. Phys. 112, 101101 (2012).

    Article  Google Scholar 

  10. K.X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, Nano Lett. 12, 1616 (2012).

    Article  CAS  Google Scholar 

  11. E.R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T.F. Krauss, Nat. Comm. 4, 2665 (2013).

    Article  Google Scholar 

  12. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D.S. Wiersma, Opt. Express 21, A460 (2013).

    Article  Google Scholar 

  13. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D.T.L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, ACS Nano 6, 2790 (2012).

    Article  CAS  Google Scholar 

  14. S.-E. Cheon, H.-S. Lee, J. Choi, A.R. Jeong, T.S. Lee, D.S. Jeong, K.-S. Lee, W.-S. Lee, W.M. Kim, H. Lee, and I. Kim, Sci. Rep. 7, 7336 (2017).

    Article  Google Scholar 

  15. C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J.G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R.T. Chen, and L.J. Guo, J. Mater. Chem. C 4, 5133 (2016).

    Article  CAS  Google Scholar 

  16. Q. Xie, M.H. Hong, H.L. Tan, G.X. Chen, L.P. Shi, and T.C. Chong, J. Alloys Compd. 449, 261 (2008).

    Article  CAS  Google Scholar 

  17. J.-Y. Choi, T.L. Alford, and C.B. Honsberg, Langmuir 30, 5732 (2014).

    Article  CAS  Google Scholar 

  18. P. Jiang, T. Prasad, M.J. McFarland, and V.L. Colvin, Appl. Phys. Lett. 89, 011908 (2006).

    Article  Google Scholar 

  19. J. Weng, X. Li, Y. Guan, X.X. Zhu, and Y. Zhang, Langmuir 32, 12876 (2016).

    Article  CAS  Google Scholar 

  20. C. García Núñez, W.T. Navaraj, F. Liu, D. Shakthivel, and R. Dahiya, ACS ApplMater. Interfaces 10, 3058 (2018).

    Article  Google Scholar 

  21. A. Sinitskii, S. Neumeier, J. Nelles, M. Fischler, and U. Simon, Nanotechnology 18, 305307 (2007).

    Article  Google Scholar 

  22. I. Pethes, R. Chahal, V. Nazabal, C. Prestipino, A. Trapananti, S. Michalik, and P. Jóvári, J. Phys. Chem. B. 120, 9204 (2016).

    Article  CAS  Google Scholar 

  23. S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, C. T. Cms, T. Collaborations, Eur. Phys. J. C, pp. 1–26.

  24. K. Han, and C.-H. Chang, Nanomaterials 4, 87 (2014).

    Article  Google Scholar 

  25. S. Boonruang, A. Greenwell, and M.G. Moharam, Appl. Opt. 45, 5740 (2006).

    Article  Google Scholar 

  26. T.K. Chong, J. Wilson, S. Mokkapati, and K.R. Catchpole, J. Opt. 14, 024012 (2012).

    Article  Google Scholar 

  27. A. Asadollahbaik, S.A. Boden, M.D.B. Charlton, D.N.R. Payne, S. Cox, and D.M. Bagnall, Opt. Express 22, A402 (2014).

    Article  Google Scholar 

  28. A. Bozzola, M. Liscidini, and L.C. Andreani, Opt. Express 20, A224 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shinhan university research fund (2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inho Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 293 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Cheon, S., Lee, Y. et al. Fabrication of Disordered Nanostructures by Nanosphere Lithography and Its Application for Ultrathin Si Wafers. J. Electron. Mater. 50, 5418–5425 (2021). https://doi.org/10.1007/s11664-021-08974-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08974-w

Keywords

Navigation