Skip to main content
Log in

Metamaterial Bandpass Filter Based on Three-Dimensional Structure

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a tunable, broadband metamaterial (MM) bandpass filter based on three-dimensional (3D) structure was designed. It improves the out-of-band attenuation problem of the traditional planar metamaterial filters. The filter has good out-of-band attenuation and produces two transmission zeros at low and high frequencies. The transmission rates at the two transmission zeros are − 20.412 dB and − 16.705 dB, respectively. The simulated results show that the 3 dB bandwidth is 46.156 THz. In addition, due to the symmetry of the structure, it is insensitive to electromagnetic (EM) waves with different polarization. It can also adjust the working bandwidth, the transmission zero and the center frequency. In the process of adjustment, the working bandwidth remains basically unchanged, while the transmission zeros and center frequency stay linear. The structure we designed provides a great possibility for the application of metamaterial filters in optical frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Seddon and T. Bearpark, Science 302, 1537 (2003).

    Article  CAS  Google Scholar 

  2. K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, and P.U. Jepsen, Opt. Express 20, 635 (2012).

    Article  CAS  Google Scholar 

  3. H. Zhang, X.Y. Cao, J. Gao, H. Yang, and Q. Yang, Prog. Electromagn. Res. Lett. 44, 35 (2014).

    Article  Google Scholar 

  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).

    Article  CAS  Google Scholar 

  5. D. Jain, and P. Tewari, Renew. Energy 80, 244 (2015).

    Article  Google Scholar 

  6. P. Rufangura, and C. Sabah, Vacuum 120, 68 (2015).

    Article  CAS  Google Scholar 

  7. H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, Sol. Energy Mater. Sol. Cells 137, 235 (2015).

    Article  Google Scholar 

  8. M.F. Ubeid, M.M. Shabat, and M.O. Sid-Ahmed, Nat. Sci. 3, 328 (2011).

    Google Scholar 

  9. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, Phys. Rev. Lett. 111, 187402 (2013).

    Article  Google Scholar 

  10. H. Zhu, F. Yi, and E. Cubukcu, Nat. Photonics 10, 709 (2016).

    Article  CAS  Google Scholar 

  11. D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, Opt. Lett. 42, 450 (2017).

    Article  CAS  Google Scholar 

  12. K.K. Amireddy, K. Balasubramaniam, and P. Rajagopal, Appl. Phys. Lett. 108, 224101 (2016).

    Article  Google Scholar 

  13. A. Ourir, A. de Lustrac, and J.M. Lourtioz, Appl. Phys. Lett. 88, 084103 (2006).

    Article  Google Scholar 

  14. I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, New J. Phys. 7, 223 (2005).

    Article  Google Scholar 

  15. K. Sakoda, and H. Zhou, Opt. Express 19, 13899 (2011).

    Article  Google Scholar 

  16. M. Zhong, and Y.H. Ye, Opt. Commun. 349, 42 (2015).

    Article  CAS  Google Scholar 

  17. X. Wang, H. Zhu, and Z. Liu, Opt. Commun. 395, 236 (2016).

    Article  Google Scholar 

  18. M. Zhong, Opt. Mater. 47, 62 (2015).

    Article  CAS  Google Scholar 

  19. B. Han, B. Dong, J. Nan, and M. Zhong, Opt. Mater. 50, 162 (2015).

    Article  CAS  Google Scholar 

  20. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).

    Article  Google Scholar 

  21. X. Wang, Y. Ye, J. Ma, and M. Jiang, Chin. Phys. Lett. 27, 094101 (2010).

    Article  Google Scholar 

  22. D.R. Smith, D.C. Vier, Th. Koschny, and C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005).

    Article  CAS  Google Scholar 

  23. K. Ozden, O.M. Yucedag, and H. Kocer, AEU-Int. J. Electron. C 70, 1062 (2016).

    Article  Google Scholar 

  24. J. Zhao, and Y. Cheng, J. Electron. Mater. 45, 5033 (2016).

    Article  CAS  Google Scholar 

  25. N. Liu, and H. Giessen, Angew. Chem. Int. Ed. 49, 9838 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant No. 61275070) and Shanghai Natural Science Foundation (Grant No. 15ZR1415900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyin Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Xu, Q. & Li, C. Metamaterial Bandpass Filter Based on Three-Dimensional Structure. Journal of Elec Materi 50, 4358–4363 (2021). https://doi.org/10.1007/s11664-021-08956-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08956-y

Keywords

Navigation