Skip to main content

Advertisement

Log in

A Transmissive Linear Polarization and Circular Polarization Cross Polarization Converter Based on All-Dielectric Metasurface

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this article, we propose a metasurface with C2 symmetry in the terahertz band, which consists of an external ring resonator and an inner double split ring resonator. In order to overcome the problems of ohmic loss and low transmission efficiency caused by the metal structure, we selected all-dielectric materials to design. From 2.17 THz to 2.24 THz, through numerical simulation, the device we proposed can achieve high-efficiency cross-polarization conversion of linearly polarized waves and circularly polarized waves, and their transmission efficiency exceeds 0.8. We first explained it through polarization orthogonal decomposition, and then the physical mechanism is investigated specifically by the distribution of electric field and magnetic field, and the influence of structural parameters on the device is also discussed. In addition, the cell we proposed has a thickness of about λ/10, which is conducive to the design and integration of terahertz devices and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Lin, J.B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.C. Yuan, and F. Capasso, Science 340, 331 (2013).

    Article  CAS  Google Scholar 

  2. C.R. Liu, Y.X. Guo, and S.Q. Xiao, IEEE Trans. Antennas Propag. 62, 6027 (2014).

    Article  Google Scholar 

  3. S. Muhammad, R. Sauleau, G. Valerio, L.L. Coq, and H. Legay, Self-IEEE Trans. Antennas Propag. 61, 1032 (2013).

    Article  Google Scholar 

  4. C.J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, Nat. Nanotechnol. 11, 520 (2016).

    Article  CAS  Google Scholar 

  5. W. Ma, L.G. Xu, A.F. de Moura, X.L. Wu, H. Kuang, C.L. Xu, and N.A. Kotov, Chem. Rev. 117, 8041 (2017).

    Article  CAS  Google Scholar 

  6. M.M. Salem, L.V. Panina, E.L. Trukhanova, M.A. Darwish, A.T. Morchenko, T.I. Zubar, S.V. Trukhanov, and A.V. Trukhanov, Compos. B: Eng. 174, 107054 (2019).

    Article  CAS  Google Scholar 

  7. P.J. Wang, D. Zhou, H.H. Guo, W.F. Liu, J.Z. Su, M.S. Fu, C. Singh, S. Trukhanov, and A. Trukhanov, J. Mater. Chem. A. 8, 11124 (2020).

    Article  CAS  Google Scholar 

  8. P.J. Wang, D. Zhou, J. Li, L.X. Pangc, W.F. Liu, J.Z. Su, C. Singh, S. Trukhanov, and A. Trukhanov, Nano Energy 78, 105247 (2020).

    Article  CAS  Google Scholar 

  9. Y. Zhang, Y.J. Feng, and J.M. Zhao, Carbon 163, 244 (2020).

    Article  CAS  Google Scholar 

  10. H.L. Zou, Z.Y. Xiao, W. Li, and C. Li, Appl. Phys. A. 124, 322 (2018).

    Article  Google Scholar 

  11. Y.N. Jiang, H.P. Zhao, L. Wang, J. Wang, W.P. Cao, and Y.Y. Wang, Opt. Mater. Express. 9, 2088 (2019).

    Article  CAS  Google Scholar 

  12. C. Du, D. Zhou, H.H. Guo, Y.Q. Pang, H.Y. Shi, W.F. Liu, J.Z. Su, C. Singh, S. Trukhanov, A. Trukhanov, L. Panina, and Z. Xu, Nanoscale 12, 9769 (2020).

    Article  CAS  Google Scholar 

  13. M.M. Chen, Z.Y. Xiao, X.J. Lu, F. Lv, and Y.J. Zhou, Carbon NY 159, 273 (2020).

    Article  CAS  Google Scholar 

  14. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, and E.L. Trukhanova, Ceram. Int. 43, 12822 (2017).

    Article  CAS  Google Scholar 

  15. A.L. Kozlovskiy, I.E. Kenzhina, and M.V. Zdorovets, Ceram. Int. 46, 10262 (2020).

    Article  CAS  Google Scholar 

  16. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Oleinik, E.S. Yakovenko, and L.Y. Matsui, JETP 123, 461 (2016).

    Article  CAS  Google Scholar 

  17. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, LYu. Matzui, D.A. Vinnik, and D.V. Karpinsky, J. Phys. Chem. Solids. 111, 142 (2017).

    Article  CAS  Google Scholar 

  18. P. Fei, G.A.E. Vandenbosch, W.H. Guo, X.W. DiXiong, W.H.Q. Zheng, and X. Chen, Adv Opt Mater. 8, 2000194 (2020).

    Article  CAS  Google Scholar 

  19. S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, and A. Shakin, J. Magn. Magn. Mater. 398, 49 (2016).

    Article  CAS  Google Scholar 

  20. A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, and E.L. Trukhanova, J. Magn. Magn. Mater. 443, 142 (2017).

    Article  CAS  Google Scholar 

  21. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasil’ev, A. Maignan, and H. Szymczak, JETP Lett. 85, 507 (2007).

    Article  CAS  Google Scholar 

  22. M.V. Zdorovets, and A.L. Kozlovskiy, Ceram. Int. 46, 14548 (2020).

    Article  CAS  Google Scholar 

  23. S.V. Trukhanov, V.A. Khomchenko, L.S. Lobanovski, M.V. Bushinsky, D.V. Karpinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, S.G. Stepin, R. Szymczak, C.E. Botez, and A. Adair, JETP 103, 398 (2006).

    Article  CAS  Google Scholar 

  24. M.V. Zdorovets, I.E. Kenzhina, V. Kudryashov, and A.L. Kozlovskiy, Ceram. Int. 46, 10521 (2020).

    Article  CAS  Google Scholar 

  25. S. Jahani, and Z. Jacob, Nat. Nanotechnol. 11, 23 (2016).

    Article  CAS  Google Scholar 

  26. L. Zhu, L. Dong, J. Guo, F.Y. Meng, X.J. He, C.H. Zhao, and Q. Wu, Plasmonics 13, 1971 (2018).

    Article  CAS  Google Scholar 

  27. L. Zhu, X. Zhao, F.J. Miao, B.K. Ghosh, L. Dong, B.R. Tao, F.Y. Meng, and W.N. Li, Opt. Express. 27, 12163 (2019).

    Article  CAS  Google Scholar 

  28. J.C. Zi, Q.X.Q. Wang, C.X. Tian, Y.F. Li, X.X. Zhang, J.G. Hana, and W.L. Zhang, Opt. Commun. 416, 130 (2018).

    Article  CAS  Google Scholar 

  29. H. Němec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U.C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, Appl. Phys. Lett. 100, 061117 (2012).

    Article  Google Scholar 

  30. L.Y. Li, J.F. Wang, H. Ma, J. Wang, M.D. Feng, H.L. Du, M.B. Yan, J.Q. Zhang, S.B. Qu, and Z. Xu, Appl. Phys Lett. 108, 122902 (2016).

    Article  Google Scholar 

  31. M.R. Akram, M.Q. Mehmood, X.D. Bai, R.H. Jin, M. Premaratne, and W.R. Zhu, Adv. Opt. Mater. 7, 1801628 (2019).

    Article  Google Scholar 

  32. C. Menzel, C. Rockstuhl, and F. Lederer, Phys. Rev. A. 82, 053811 (2010).

    Article  Google Scholar 

  33. G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C.M. Soukoulis, and E.N. Economou, Opt. Mater. Express. 2, 1702 (2012).

    Article  CAS  Google Scholar 

  34. X. Gao, X. Han, W.P. Cao, H.O. Li, H.F. Ma, and T.J. Cui, IEEE Trans. Antennas Propag. 63, 3522 (2015).

    Article  Google Scholar 

  35. S.D. Gupta, N. Dabidian, I. Kholmanov, M.A. Belkin, and G. Shvets, Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160061 (2017).

    Google Scholar 

  36. C. Wei, X. Yang, and J. Gao, Sci. Rep. 7, 8841 (2017).

    Article  Google Scholar 

  37. Z.H. Zhao, G.H. Xu, J.M. Zhang, Y.L. Zhang, J. Liu, S.B. Lyu, H.W. Cheng, D.Y. Lei, and J.L. Duan, J. Mater. Chem. C Mate. 8, 9293 (2020).

    Article  CAS  Google Scholar 

  38. J. Gao, K. Zhang, G.H. Yang, S. Kahng, and Q. Wu, Symmetry. 10, 423 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyin Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Xiao, Z., Chen, M. et al. A Transmissive Linear Polarization and Circular Polarization Cross Polarization Converter Based on All-Dielectric Metasurface. J. Electron. Mater. 50, 4207–4214 (2021). https://doi.org/10.1007/s11664-021-08944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08944-2

Keywords

Navigation