Skip to main content
Log in

The Role of Silver Nanoparticles in the Hole Transport Layer in Organic Solar Cells Based on PBDB-T:ITIC

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the fabrication and characterization of organic solar cells under the bulk heterojunction approach in a direct architecture, with gold nanoparticles (Ag-NPs) disseminated into the hole transport layer (HTL) based on PEDOT:PSS is carried out. The active layer is a blend of PBDB-T donor with the non-fullerene electron acceptor ITIC. Ag-NPs dispersed in deionized water are synthesized by laser ablation protocols using a pulsed Nd:YAG laser. Results show an open-circuit voltage (Voc) of 0.84 V, a short circuit current density (Jsc) of 15.5 mA/cm2, a fill factor (FF) of 0.49% and a power conversion efficiency (PCE) of 6.4% when 5% of Ag-NPs are incorporated into the PEDOT:PSS layer; for pristine PEDOT:PSS film, the photovoltaic parameters are Voc of 0.85 V, Jsc of 15.4 mA/cm2, FF of 0.45% and PCE of 5.9%; these results mean an 8.5% of PCE enhancement with the Ag-NPs incorporation. Ag-NPs are introduced into the pristine layer PEDOT:PSS to increase light absorption into the active layer through the localized surface plasmonic resonance effect.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Liu, T. Hou, X. Xu, L. Sun, J. Zhou, X. Zhao, and S. Zhang, Macromol. Rapid. Commun. 39, 170555 (2018). https://doi.org/10.1002/marc.201700555.

    Article  CAS  Google Scholar 

  2. G. Zhang, J. Zhao, P. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, Chem. Rev. 118, 3447 (2018). https://doi.org/10.1021/acs.chemrev.7b00535.

    Article  CAS  Google Scholar 

  3. N. Gasparini, A. Wadsworth, M. Moser, D. Baran, I.M. Culloch, and C. Brabec, Adv. Energy Mater. 8, 1703298 (2018). https://doi.org/10.1002/aenm.201703298.

    Article  CAS  Google Scholar 

  4. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, Sci. Bull. 65, 272 (2020). https://doi.org/10.1016/j.scib.2020.01.001.

    Article  CAS  Google Scholar 

  5. Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel, G.T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C.T. Howells, O.M. Bakr, I. McCulloch, S.D. Wolf, L. Tsetseris, and T.D. Anthopoulos, ACS Energy Lett. 5, 2935 (2020). https://doi.org/10.1021/acsenergylett.0c01421.

    Article  CAS  Google Scholar 

  6. W. Lu, Y. Peng, Q. Chen, W. Tang, T. Pang, S. Zhang, Z. Liu, L. Yan, and X. Wang, AIP. Adv. 8, 095027 (2018). https://doi.org/10.1063/1.5049424.

    Article  CAS  Google Scholar 

  7. D. Spoltore, A. Hofacker, J. Benduhn, S. Ullbrich, M. Nyman, O. Zeika, S. Schellhammer, Y. Fan, I. Ramirez, S. Barlow, M. Riede, S.R. Marder, F. Ortmann, and K. Vandewal, J. Phys. Chem. Lett. 9, 5496 (2018). https://doi.org/10.1021/acs.jpclett.8b02177.

    Article  CAS  Google Scholar 

  8. I. Caballero-Quintana, J.-L. Maldonado, M.-A. Meneses-Nava, O. Barbosa-García, J. Valenzuela-Benavides, and A. Bousseksou, Adv. Electron. Mater. 5, 1800499 (2018). https://doi.org/10.1002/aelm.201800499.

    Article  CAS  Google Scholar 

  9. F. Jiang, W. Choy, X. Li, D. Zhang, and J. Cheng, Adv. Mater. 27, 2930 (2015). https://doi.org/10.1002/adma.201405391.

    Article  CAS  Google Scholar 

  10. X. Wang, A. Kyaw, C. Yin, F. Wang, Q. Zhu, T. Tang, P.I. Yee, and J. Xu, RSC. Adv. 8, 18334 (2018). https://doi.org/10.1039/C8RA02058B.

    Article  CAS  Google Scholar 

  11. B. Xu, S.-A. Gopalan, A.-I. Gopalan, N. Muthuchamy, K.-P. Lee, J.-S. Lee, Y. Jiang, S.-W. Lee, S.-W. Kim, J.-S. Kim, H.-M. Jeong, J.-B. Kwon, J.-H. Bae, and S.-W. Kang, Sci. Rep. 7, 46779 (2017). https://doi.org/10.1038/srep45079.

    Article  CAS  Google Scholar 

  12. G. Spyropoulos, M. Stylianakis, E. Stratakis, and E. Kymakis, Appl. Phys. Lett. 100, 213904 (2012). https://doi.org/10.1063/1.4720510.

    Article  CAS  Google Scholar 

  13. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M.H. Huang, and C.-S. Hsu, ACS Nano 5, 959 (2011). https://doi.org/10.1021/nn102295p.

    Article  CAS  Google Scholar 

  14. J.H. Lee, J.H. Park, J.S. Kim, D.Y. Lee, and K. Cho, Org. Electron. 10, 416 (2009). https://doi.org/10.1016/j.orgel.2009.01.004.

    Article  CAS  Google Scholar 

  15. S. Nagamani, G. Kumarasamy, M. Song, C.S. Kim, D.-H. Kim, S.Y. Ryu, J.-W. Kang, and S.-H. Jin, Synth. Met. 217, 117 (2016). https://doi.org/10.1016/j.synthmet.2016.03.025.

    Article  CAS  Google Scholar 

  16. K.S. Yie, H. Zong-Chun, C. Chun-Hsien, Y. Shun-Shing, C. Ming-Kai, L. Yu-Tung, Y.S. Shan, T.T. Yong, and C. Fang-Chung, Sci. Adv. Mater. 9, 1435 (2017). https://doi.org/10.1166/sam.2017.3114.

    Article  CAS  Google Scholar 

  17. A. Srivastava, D.P. Samajdar, and D. Sharma, Sol. Energy 173, 905 (2018). https://doi.org/10.1016/j.solener.2018.08.028.

    Article  CAS  Google Scholar 

  18. E. Stratakis, and E. Kymakis, Mater. Today 16, 133 (2013). https://doi.org/10.1016/j.mattod.2013.04.006.

    Article  CAS  Google Scholar 

  19. M. Tang, B. Sun, D. Zhou, Z. Gu, K. Chen, J. Guo, L. Feng, and Y. Zhou, Org. Electron. 38, 213 (2016). https://doi.org/10.1016/j.orgel.2016.08.023.

    Article  CAS  Google Scholar 

  20. S. In, D. Mason, H. Lee, M. Jung, C. Lee, and N. Park, ACS Photon. 2, 78 (2015). https://doi.org/10.1021/ph500268y.

    Article  CAS  Google Scholar 

  21. W.-H. Tseng, C.-Y. Chiu, S.-W. Chou, H.-C. Chen, M.-L. Tsai, Y.-C. Kuo, D.-H. Lien, Y.-C. Tsao, K.-Y. Huang, C.-T. Yeh, J.-H. He, C.-I. Wu, M.H. Huang, and P.-T. Chou, J. Phys. Chem. C 119, 7554 (2015). https://doi.org/10.1021/jp512192e.

    Article  CAS  Google Scholar 

  22. K. Ueno, T. Oshikiri, Q. Sun, X. Shi, and H. Misawa, Chem. Rev. 118, 2955 (2018). https://doi.org/10.1021/acs.chemrev.7b00235.

    Article  CAS  Google Scholar 

  23. E. Wongrat, S. Wongkrajang, A. Chuejetton, C. Bhoomanee, and S. Choopun, Mater. Res. Innov. 23, 66 (2017). https://doi.org/10.1080/14328917.2017.1376786.

    Article  CAS  Google Scholar 

  24. Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, Org. Electron. 48, 336 (2017). https://doi.org/10.1016/j.orgel.2017.06.003.

    Article  CAS  Google Scholar 

  25. A.M. Ali, D. Said, M. Khayyat, M. Boustimi, and R. Seoudi, Results Phys. 16, 102819 (2020). https://doi.org/10.1016/j.rinp.2019.102819.

    Article  Google Scholar 

  26. Z. Tang, W. Tress, and O. Inganäs, Mater. Today 17, 389 (2014). https://doi.org/10.1016/j.mattod.2014.05.008.

    Article  CAS  Google Scholar 

  27. H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, Sol. Energy Mater. Sol. Cells 140, 224 (2015). https://doi.org/10.1016/j.solmat.2015.04.021.

    Article  CAS  Google Scholar 

  28. F. Otieno, N. Shumbula, M. Airo, M. Mbuso, N. Moloto, R. Erasmus, A. Quandt, and D. Wamwangi, AIP. Adv. 7, 085302 (2017). https://doi.org/10.1063/1.4995803.

    Article  CAS  Google Scholar 

  29. K. Lim, J. Kang, S. Jung, S. Lee, J. Park, D.G. Kim, and Y.C. Kang, Bull. Korean Chem. Soc. 39, 469 (2018). https://doi.org/10.1002/bkcs.11410.

    Article  CAS  Google Scholar 

  30. E. Alikhaidarova, D. Afanasyev, and N. Ibrayev, Mater. Today Proc. 214, 7853 (2019). https://doi.org/10.1016/j.matpr.2019.11.011.

    Article  CAS  Google Scholar 

  31. T. Praveen, and P. Predeep, Technol. Lett. 2, 19 (2015). https://technologyletters.org/prav/pdf14/S2015020202-main.pdf

    Google Scholar 

  32. M. Mumtaz, B. Ouvrard, L. Maillaud, C. Labrugere, E. Cloutet, H. Cramail, and M.H. Delville, Eur. J. Inorg. Chem. 32, 5360 (2012). https://doi.org/10.1002/ejic.201200856.

    Article  CAS  Google Scholar 

  33. H. Atwater, and A. Polman, Nat. Mater. 9, 205 (2010). https://doi.org/10.1038/nmat2629.

    Article  CAS  Google Scholar 

  34. C.-H. Kim, S.-H. Cha, S.C. Kim, M. Song, J. Lee, W.S. Shin, S.-J. Moon, J.H. Bahng, N. Kotov, and S.-H. Jin, ACS Nano 5, 3319 (2011). https://doi.org/10.1021/nn200469d.

    Article  CAS  Google Scholar 

  35. B. Gökce, R. Streubel, T. Hupfeld, and S. Barcikowski, Laser ablation in liquids: Fundamentals and applications, in Proceedings of the Spie, vol. 10905 Lamon XXIV, p 1090517 (2019) https://doi.org/10.1117/12.2507826

  36. J.E.A. Rosales, G.R. Ortiz, G. Martínez-Ponce, R. Castro-Beltrán, L. Polo-Parada, and G. Gutiérrez-Juárez, Results Phys. 11, 350 (2018). https://doi.org/10.1016/j.rinp.2018.08.039.

    Article  Google Scholar 

  37. G. Palazzo, G. Valenza, M. Dell’Aglio, A.D. Giacomo, and J. Colloid, Interface Sci. 489, 47 (2017). https://doi.org/10.1016/j.jcis.2016.09.017.

    Article  CAS  Google Scholar 

  38. P.A. Hedei, S. Alsaee, A. Fairuz, U. Hashim, and N.M. Kaus, J. Nanophoton. 13, 020502 (2019). https://doi.org/10.1117/1.JNP.13.020502.

    Article  Google Scholar 

  39. N. Mottaghi, M. Ranjbar, H. Farrokhpour, M. Khoshouei, A. Khoshouei, P. Kameli, H. Salamati, M. Tabrizchi, and J. Nosrati, Appl. Surf. Sci. 292, 892 (2014). https://doi.org/10.1016/j.apsusc.2013.12.075.

    Article  CAS  Google Scholar 

  40. M. Fernández-Arias, M. Boutinguiza, J. del Val, E. Medina, D. Rodríguez, A. Riveiro, R. Comesaña, F. Lusquiños, F.J. Gil, and J. Pou, Appl. Surf. Sci. 473, 548 (2019). https://doi.org/10.1016/j.apsusc.2018.12.182.

    Article  CAS  Google Scholar 

  41. D. Barreiro-Argüelles, G. Ramos-Ortiz, J.-L. Maldonado, E. Pérez-Gutiérrez, D. Romero-Borja, and A. Álvarez-Fernández, IEEE. J. Photovolt. 7, 191 (2017). https://doi.org/10.1109/JPHOTOV.2016.2617087.

    Article  Google Scholar 

  42. J. Nicasio-Collazo, J.L. Maldonado, J. Salinas-Cruz, D. Barreiro-Argüelles, I. Caballero-Quintana, C. Vázquez-Espinosa, and D. Romero-Borja, Opt. Mater. 98, 109434 (2019). https://doi.org/10.1016/j.optmat.2019.109434.

    Article  CAS  Google Scholar 

  43. O. Amargós-Reyes, J.-L. Maldonado, D. Romero-Borja, D. Barreiro-Argüelles, I. Caballero-Quintana, O. Barbosa-García, and J. Gaspar, J. Mater. Sci. 54, 2427 (2019). https://doi.org/10.1007/s10853-018-2956-2.

    Article  CAS  Google Scholar 

  44. D. Barreiro-Argüelles, G. Ramos-Ortiz, J.-L. Maldonado, E. Pérez-Gutiérrez, D. Romero-Borja, M.-A. Meneses-Nava, and J. Nolasco, Sol. Energy 163, 510 (2018). https://doi.org/10.1016/j.solener.2018.01.090.

    Article  CAS  Google Scholar 

  45. G. Boltaev, R. Ganeev, S.K. Maurya, P. Redkin, K.S. Rao, K. Zhang, and C. Guo, Appl. Phys. A. 124, 766 (2018). https://doi.org/10.1007/s00339-018-2195-z.

    Article  CAS  Google Scholar 

  46. O. Amargós-Reyes, I. Caballero-Quintana, J.L. Maldonado, J. Nicasio-Collazo, and D. Romero-Borja, Appl. Optics 58, 8285 (2020). https://doi.org/10.1364/AO.402510.

    Article  Google Scholar 

  47. I. Caballero-Quintana, O. Amargós-Reyes, J.L. Maldonado, J. Nicasio-Collazo, D. Romero-Borja, D. Barreiro-Argüelles, G. Molnár, and A. Bousseksou, ACS Appl. Mater. Interfaces 12, 29520 (2020). https://doi.org/10.1021/Acsami.0c06048?Ref=Pdf.

    Article  CAS  Google Scholar 

  48. H. Qayyum, R. Ali, Z. Urrehman, S. Ullah, B. Shafique, H. Dogar, A. Shah, and A. Qayyum, J. Laser Appl. 31, 022014 (2019). https://doi.org/10.2351/1.5086838.

    Article  CAS  Google Scholar 

  49. T. Dasri, Integr. Ferroelectr. 175, 176 (2016). https://doi.org/10.1080/10584587.2016.1204201.

    Article  CAS  Google Scholar 

  50. Q.N. Tran, J.H. Kim, and S.J. Par, Mol. Cryst. Liq. Cryst. 645, 151 (2017). https://doi.org/10.1080/15421406.2016.1277634.

    Article  CAS  Google Scholar 

  51. H.S. Kim, Q.N. Tran, and S.J. Park, MOC. Tokyo 22, 310 (2017). https://doi.org/10.23919/MOC.2017.8244610.

    Article  Google Scholar 

  52. Y. Chang, F. Chou, P. Yeh, H. Chen, S. Chang, Y. Lan, T. Guo, T. Tsai, and C. Lee, J. Vac. Sci. Technol. B 25, 1899 (2007). https://doi.org/10.1116/1.2806959.

    Article  CAS  Google Scholar 

  53. R. Peng, Z. Wan, W. Song, T. Yan, Q. Qiao, S. Yang, Z. Ge, and M. Wang, ACS. Appl. Mater. Interfaces 11, 42447 (2019). https://doi.org/10.1021/acsami.9b16404.

    Article  CAS  Google Scholar 

  54. Y. Han, Soft Matter 16, 31 (2018). https://doi.org/10.1080/1539445X.2017.1387151.

    Article  CAS  Google Scholar 

  55. J. Singh, V.S. Nirwal, P.K. Bhatnagar, and K.R. Peta, AIP. Conf. Proc. 1953, 030251 (2018). https://doi.org/10.1063/1.5032586.

    Article  CAS  Google Scholar 

  56. X. Li, Z. Deng, Y. Yin, L. Zhu, D. Xu, Y. Wang, and F. Teng, J. Mater. Sci. Mater. Electron. 25, 140 (2014). https://doi.org/10.1007/s10854-013-1563-x.

    Article  CAS  Google Scholar 

  57. N.G. Semaltianos, W. Perrie, S. Romani, R.J. Potter, G. Dearden, and K.G. Watkins, Colloid Polym. Sci. 290, 213 (2011). https://doi.org/10.1007/s00396-011-2533-6.

    Article  CAS  Google Scholar 

  58. C.-P. Chen, I.-C. Lee, Y.-Y. Tsai, C.-L. Huang, Y.-C. Chen, and G.-W. Huang, Org. Electron. 62, 95 (2018). https://doi.org/10.1016/j.orgel.2018.07.024.

    Article  CAS  Google Scholar 

  59. P. Shamjid, N. Abhijith, P. Vivek, C.S. Joel, and V.S. Reddy, Phys. B 560, 174 (2019). https://doi.org/10.1016/j.physb.2019.01.052.

    Article  CAS  Google Scholar 

  60. D. Ganeshan, S.-C. Chen, Z. Yin, and Q. Zheng, RSC. Adv. 5, 16153 (2015). https://doi.org/10.1039/C4RA15343J.

    Article  CAS  Google Scholar 

  61. L. Lu, Z. Luo, T. Xu, and L. Yu, Nano. Lett. 13, 59 (2013). https://doi.org/10.1021/nl3034398.

    Article  CAS  Google Scholar 

  62. F. Chang, H. Li, B. Zheng, K. Qian, Q. Lei, G. Han, Y. Song, and P. Shao, J. Mater. Sci. Mater. Electron. 29, 1349 (2018). https://doi.org/10.1007/s10854-017-8041-9.

    Article  CAS  Google Scholar 

  63. W. Sha, H. Zhu, L. Chen, W.C. Chew, and W. Choy, Sci. Rep. 5, 8525 (2015). https://doi.org/10.1038/srep08525.

    Article  CAS  Google Scholar 

  64. SCAPS-1D, http://scaps.elis.ugent.be/. Accessed 2 Feb 2021.

  65. S. Maruno, Org. Electron. 64, 154 (2019). https://doi.org/10.1016/j.orgel.2018.10.008.

    Article  CAS  Google Scholar 

  66. N. Tran, H. Lee, J. Kim, and S. Park, J. Nanosci. Nanotechno. 20, 304 (2020). https://doi.org/10.1166/jnn.2020.17253.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank to M. Olmos (GPOM-CIO) for his technical assistance, A. Dzib-Chalé (Motul Tech) for SCAPs simulations and Prof. Dr. M. Burgelman, University of Gent, Belgium, for the permission to use it. To Y. Fernández-Arteaga (GPOM-CIO) for absorbance/transmittance measurements and J. E. Alba Rosales for the Ag-NPs TEM images and Gaussian statistical distribution.

Funding

This research was supported by CONACyT Grant (Mexico) “Laboratorio Nacional de Materiales Grafénicos (LNMG)”, Fronteras de la Ciencia, Grants 2029 (2016) and 376135 (2020), and Dirección de Apoyo a la Investigación y el Posgrado (DAIP) of the Universidad de Guanajuato (CIIC Grant 219/2020). J. Rivera-Taco thanks “Universidad Nacional de San Agustín de Arequipa (UNSA), Perú” for financial support through the grant # TD-004-2018-UNSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Luis Maldonado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 290 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Taco, J., Castro-Beltrán, R., Maldonado, JL. et al. The Role of Silver Nanoparticles in the Hole Transport Layer in Organic Solar Cells Based on PBDB-T:ITIC. J. Electron. Mater. 50, 4118–4127 (2021). https://doi.org/10.1007/s11664-021-08919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08919-3

Keywords

Navigation