Skip to main content
Log in

Assessment of Structural Stability of Dye-Doped Potassium Dihydrogen Phosphate Under Shocked Conditions

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present research article, the structural stability and performance of dye-doped potassium dihydrogen phosphate (KDP) powder samples were assessed under loading of dynamic shock waves. The obtained powder x-ray diffraction (XRD) profiles revealed that orientation defects and micro-distortions occurred in the crystalline phase due to the impact of shock waves. The results show that the abovementioned structural parameters were significantly altered, whereas the shocks did not lead to any structural phase transformation even when loading 100 shock waves for all the KDP samples. Hence, we suggest that KDP crystals have structural stability against dynamic shock wave impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Kadau, T.C. Germann, P.S. Lomdahl, and B.L. Holian, Microscopic view of structural phase transitions induced by shock waves, Science 296, 1681 (2002).

    Article  CAS  Google Scholar 

  2. A. Lukyanov, Modeling shock waves in composite materials, Mech Adv. Mater. Struct. 17, 304 (2010).

    Article  CAS  Google Scholar 

  3. A. Sivakumar, S. Sahaya Jude Dhas, S. Balachandar, and S.A. Martin Britto Dhas, Effect of shock waves on structural and dielectric properties of ammonium dihydrogen phosphate Crystal, Z. Kristallogr. 234, 557 (2019).

    Google Scholar 

  4. A. Sivakumar, S. Suresh, S. Balachandar, J. Thirupathy, J. Kalyana Sundar, and S.A. Martin Britto Dhas, Effect of shock waves on thermophysical properties of ADP and KDP crystals, Optic. Laser Tech. 11, 284 (2019).

    Article  Google Scholar 

  5. A. Sivakumar, P. Eniya, S. Sahaya Jude Dhas, J. Kalyana Sundar, P. Sivaprakash, S. Arumugam, and S.A. Martin Britto Dhas, Shock wave induced defect engineering on structural and optical properties of pure and dye doped potassium dihydrogen phosphate crystals, Z. Kristallogr. (2020). https://doi.org/10.1515/zkri-2020-0017.

    Article  Google Scholar 

  6. V. Jayaram, and K.P.J. Reddy, Experimental study of the effect of strong shock heated test gases with cubic zirconia, Adv. Mater. Lett. 7, 100 (2016).

    Google Scholar 

  7. S. Kalaiarasi, A. Sivakumar, S.A. Martin Britto Dhas, and M. Jose, Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube, Mater. Lett. 219, 72 (2018).

    Article  CAS  Google Scholar 

  8. A.K. Al-Qananwah, J. Koplik, and Y. Andreopoulos, Shock wave interactions with nano-structured materials: a molecular dynamics approach, Shock Waves 23, 69 (2013).

    Article  Google Scholar 

  9. Y.Q. Zhu, T. Sekine, K.S. Brigatti, S. Firth, R. Tenne, R. Rosentsveig, H.W. Kroto, and D.R.M. Walton, Shock-Wave Resistance of WS2 Nanotubes, J. Am. Chem. Soc. 125, 1329 (2003).

    Article  CAS  Google Scholar 

  10. S.H. Kim, B.H. Oh, K.W. Lee, and C.E. Lee, Structural and proton-dynamical effects in a proton-irradiated KH2PO4 single crystal, Phys. Rev. B. 73, 134114 (2006).

    Article  Google Scholar 

  11. Y. Ren, X. Zhao, E.W. Hagley, and L. Deng, Ambient-condition growth of high-pressure phase centrosymmetric crystalline KDP microstructures for optical second harmonic generation, Sci. Adv. 2, 1600404 (2016).

    Article  Google Scholar 

  12. U. Roth, M. Trobs, T. Graf, J.E. Balmer, and H.P. Weber, Proton and gamma radiation tests on nonlinear crystals, Appl. Optics. 41, 464 (2002).

    Article  CAS  Google Scholar 

  13. A. Sivakumar, C. Victor, M. Muralidhr Nayak, and S.A. Martin Britto Dhas, Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions, Mater. Res. Express. 6, 045031 (2019).

    Article  Google Scholar 

  14. T. Kanagasekaran, P. Mythili, P. Srinivasan, N. Vijayan, G. Bhagavannarayana, P.K. Kulriya, D. Kanjilal, R. Gopalakrishnan, and P. Ramasamy, Effects of 50 MeV Si ion irradiation on nonlinear optical benzimidazole single crystals, Cryst. Res. Technol. 42, 1376 (2007).

    Article  CAS  Google Scholar 

  15. V. Meenatchi, and S.P. Meenakshisundaram, Unidirectional growth and characterization of mixed crystals: Na(I)-incorporated KDP, Optik 126, 4032 (2015).

    Article  CAS  Google Scholar 

  16. K. Boopathi, and P. Ramasamy, Effect of L-tyrosine on the solubility, growth, structural, optical, SHG, dielectric and mechanical properties of KDP single crystals, Optic. Mater 37, 629 (2014).

    Article  CAS  Google Scholar 

  17. S. Chandran, R. Paulraj, and P. Ramasamy, Influence of amaranth dye on the growth and properties of KDP single crystal, Mater. Res. Bull. 68, 210 (2015).

    Article  CAS  Google Scholar 

  18. G. Liu, D. Wang, Z. Cui, C. Shen, M. Xu, F. Meng, S. Yaod, and S. Wang, Influence of agitation intensity on solution stability for rapidly grown KDP crystal through theoretical and experimental research, Mater. Today Commun. 24, 101007 (2020).

    Article  CAS  Google Scholar 

  19. I. Pritula, A. Kosinova, M. Kolybayeva, V. Puzikov, S. Bondarenko, V. Tkachenko, V. Tsurikov, and O. Fesenko, Optical, structural and microhardness properties of KDP crystals grown from urea-doped solutions, Mater. Res. Bull. 43, 2778 (2008).

    Article  CAS  Google Scholar 

  20. K. Mylvaganam, L. Zhang, and Y. Zhang, Stress-induced phase and structural changes in KDP crystals, Comput. Mater. Sci 109, 359 (2015).

    Article  CAS  Google Scholar 

  21. S.O. Kucheyev, and T.E. Felter, Structural disorder produced in KH2PO4 by light-ion bombardment, J. Appl. Phys. 95, 8475 (2004).

    Article  CAS  Google Scholar 

  22. A. Sivakumar, S. Sahaya Jude Dhas, S. Balachandar, and S.A. Martin Britto Dhas, Impact of Shock Waves on Molecular and Structural Response of Potassium Dihydrogen Phosphate Crystal, J. Electr. Mater. 48, 7868 (2019).

    Article  CAS  Google Scholar 

  23. A.N. Zhukova, N.S. Sidorovb, A.V. Palnichenkob, V.V. Avdonina, and D.V. Shakhrai, Influence of shock-wave pressure up to 65 GPa on the crystal structure and superconducting properties of MgB2, High. Press. Res. 29, 414 (2009).

    Article  Google Scholar 

  24. E.V. Boldyreva, T.P. Shakhtshneider, H. Sowa, and H. Ahsbahs, Effect of hydrostatic pressure up to 6 GPa on the crystal structures of ammonium and sodium hexafluorosilicates, (NH4)2SiF6 and Na2SiF6; a phase transition in (NH4)2SiF6 at 0.2–0.3 GPa, Z. Kristallogr. 222, 23 (2007).

    Article  CAS  Google Scholar 

  25. A. Sivakumar, S. Sahaya Jude Dhas, and S.A. Martin Britto Dhas, Impact of Shock Waves on Vibrational and Structural Properties of Glycine Phosphite, Solid State Sci. 110, 106452 (2020).

    Article  CAS  Google Scholar 

  26. A. Srivastava, N. Kumar, K.P. Misra, and S. Khare, Enhancement of Band Gap of ZnO Nanocrystalline Films at a Faster Rate Using Sr Dopant, Electron. Mater. Lett 10, 703 (2014).

    Article  CAS  Google Scholar 

  27. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, and A. Sumaila, Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 045013 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-1438-052. The author S. Arumugam acknowledges the funding agencies of DST for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Sahaya Jude Dhas, S., Sivaprakash, P. et al. Assessment of Structural Stability of Dye-Doped Potassium Dihydrogen Phosphate Under Shocked Conditions. J. Electron. Mater. 50, 4215–4221 (2021). https://doi.org/10.1007/s11664-021-08912-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08912-w

Keywords

Navigation