Skip to main content
Log in

Effects of Voltage and Temperature on Photoelectric Properties of Rolled-Up Quantum Well Nanomembranes

  • Brief Communication
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Rolled-up quantum well (QW) nanomembranes with different diameters are prepared using the lift-off method. The structural evolution and the influences of voltage and temperature on the photoelectric properties of the nanomembranes are investigated. We find that a QW in tensile status can enhance the photorepsonse by about 2.1 times, and a QW in compressive status leads to a decrease of photorepsonse to ~ 65%. With increasing temperature, the gap between the ground state and excited state in the conduction band decreases with a rate of ~ 0.008 meV/K and the thermal effect mainly affects the shift of conduction band. For a working rolled-up device, the change of band gap due to the thermal effect from the applied voltage is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. E.J. Smith, Z.W. Liu, Y.F. Mei, and O.G. Schmidt, Nano Lett. 10, 1 (2010).

    Article  CAS  Google Scholar 

  2. W. Huang, X. Yu, P. Froeter, R.M. Xu, P. Ferreira, and X.L. Li, Nano Lett. 12, 6283 (2012).

    Article  CAS  Google Scholar 

  3. C. Muller, C.C.B. Bufon, D. Makarov, L.E. Fernandez-Outon, W.A.A. Macedo, O.G. Schmidt, and D.H. Mosca, Nanoscale 4, 715 (2012).

    Article  Google Scholar 

  4. A.A. Solovev, S. Sanchez, Y.F. Mei, and O.G. Schmidt, Phys. Chem. Chem. Phys. 13, 10131 (2011).

    Article  CAS  Google Scholar 

  5. S. Böttner, S.L. Li, J. Trommer, S. Kiravittaya, and O.G. Schmidt, Opt. Lett. 37, 5136 (2012).

    Article  Google Scholar 

  6. H. Wang, H.L. Zhen, S.L. Li, Y.L. Jing, G.S. Huang, Y.F. Mei, and W. Lu, Sci. Adv. 2, e1600027 (2016).

    Article  Google Scholar 

  7. F. Zhang, X.F. Nie, G.S. Huang, H.L. Zhen, F. Ding, Z.F. Di, and Y.F. Mei, Appl. Phys. Express 12, 065003 (2019).

    Article  CAS  Google Scholar 

  8. K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, Nano Lett. 10, 627 (2010).

    Article  CAS  Google Scholar 

  9. C. Ortix, and J.V.D. Brink, Phys. Rev. B 81, 165419 (2010).

    Article  Google Scholar 

  10. Y.F. Mei, S. Kiravittaya, S. Harazim, and O.G. Schmidt, Mat. Sci. Eng. R 70, 209 (2010).

    Article  Google Scholar 

  11. J.H. Wong, B.R. Wu, and M.F. Lin, J. Phys. Chem. C 116, 8271 (2012).

    Article  CAS  Google Scholar 

  12. G. Pizzi, M. Virgilio, G. Grosso, S. Kiravittaya, and O.G. Schmidt, Phys. Rev. B 85, 075308 (2012).

    Article  Google Scholar 

  13. G.S. Huang, and Y.F. Mei, J. Materiomics 1, 296 (2015).

    Article  Google Scholar 

  14. Y.F. Mei, S. Kiravittaya, M. Benyoucef, D.J. Thurmer, T. Zander, C. Deneke, F. Cavallo, A. Rastelli, and O.G. Schmidt, Nano Lett. 7, 1676 (2007).

    Article  CAS  Google Scholar 

  15. X.Y. Lin, Y.F. Fang, L.J. Zhu, J. Zhang, G.S. Huang, J. Wang, and Y.F. Mei, Adv. Opt. Mater. 4, 936 (2016).

    Article  CAS  Google Scholar 

  16. V.A. Harutyunyan, J. Appl. Phys. 10925, 014325 (2011).

    Article  Google Scholar 

  17. C. Strelow, C.M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. B 76, 045303 (2007).

    Article  Google Scholar 

  18. C. Deneke, A. Malachias, S. Kiravittaya, M. Benyoucef, T.H. Metzger, and O.G. Schmidt, Appl. Phys. Lett. 96, 143101 (2010).

    Article  Google Scholar 

  19. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, V.V. Preobrazhenskii, M.A. Putyato, and T.A. Gavrilova, Phys. E 6, 828 (2000).

    Article  CAS  Google Scholar 

  20. C. Strelow, C.M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, C. Heyn, D. Heitmann, and T. Kippl, Phys. Rev. B 85, 155329 (2012).

    Article  Google Scholar 

  21. F. Zhang, G.S. Huang, X.F. Nie, Z. Ma, Z.F. Di, H.L. Zhen, and Y.F. Mei, Phys. Lett. A 383, 2938 (2019).

    Article  CAS  Google Scholar 

  22. J.H. Baek, M. Yoon, B. Lee, and E.H. Lee, Extended Abstracts of the 1994 International Conference on Solid State Devices and Materials (Yokohama, 1994), p 178–180

  23. L.N. Nikitina, S.V. Obukhov, and V.G. Tyuterev, Russ. Phys. J. 52, 742 (2009).

    Article  CAS  Google Scholar 

  24. Z.B. Tian, V. Veerasubramanian, P. Bianucci, Z.T. Mi, A.G. Kirk, and D.V. Plant, Opt. Lett. 36, 3506 (2011).

    Article  CAS  Google Scholar 

  25. C. Peter, K. Suwit, M. Ingolf, S. Joachim, and G.S. Oliver, Nano Lett. 11, 236 (2011).

    Article  Google Scholar 

  26. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, Phys. Rev. Lett. 105, 26 (2010).

    Article  Google Scholar 

  27. A. Pateras, J. Park, Y. Ahn, J.A. Tilka, M.V. Holt, C. Reichl, W. Wegscheider, T.A. Baart, J.P. Dehollain, U. Mukhopadhyay, L.M.K. Vandersypen, and P.G. Evans, Nano Lett. 18, 2780 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 61805042, 61975035 and U1632115) and the Science and Technology Commission of Shanghai Municipality (Nos. 20ZR1423400, 18ZR1405100, and 19XD1400600). The authors would like to thank the Shanghai Synchrotron Radiation Facility BL15U1 and its staff Ling Zhang for allowing us to perform the XRD analyses. Part of the experimental work was carried out in the Fudan Nanofabrication Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoshan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11664_2021_8880_MOESM1_ESM.pdf

Supplementary material shows that the (110) peak is the Bragg diffraction of two different kinds of atoms connected with chemical bonds. (PDF 320 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Huang, G., Mei, Y. et al. Effects of Voltage and Temperature on Photoelectric Properties of Rolled-Up Quantum Well Nanomembranes. J. Electron. Mater. 50, 3111–3115 (2021). https://doi.org/10.1007/s11664-021-08880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08880-1

Keywords

Navigation