Skip to main content
Log in

Modulating Carrier Distribution for Efficient AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Introducing an Asymmetric Quantum Well

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Owing to poor hole-injection efficiency, conventional AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) generally suffer from a seriously inhomogeneous carrier distribution in the quantum well region. This leads to uneven radiative recombination rates, seriously affecting the luminous efficiency. In this paper, however, we propose an asymmetric quantum well (AQW) near the interface between the last quantum barrier and the electron blocking layer to fully utilize the inhomogeneous distribution characteristics. The optoelectronic performances of conventional and a proposed DUV-LED with an AQW have been numerically simulated and analyzed. The results reveal that electrons and holes tend to gather and recombine in the AQW region. This significantly enhances the internal quantum efficiency and the light output power with an improvement of about 120%, although it increases the peak emission wavelength red-shift. The peak emission wavelength of the AQW can be adjusted to the wavelength of the original structure while keeping a high optical efficiency by simply increasing the Al composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Science 327, 60 (2010).

    Article  CAS  Google Scholar 

  2. C. He, W. Zhao, H. Wu, S. Zhang, K. Zhang, L. He, N. Liu, Z. Chen, and B. Shen, Cryst. Growth Des. 18, 6816 (2018).

    Article  CAS  Google Scholar 

  3. C. Chu, K. Tian, J. Che, H. Shao, J. Kou, Y. Zhang, Y. Li, M. Wang, Y. Zhu, and Z. Zhang, Opt. Express 27, A620 (2019).

    Article  CAS  Google Scholar 

  4. S.M. Islam, K. Lee, J. Verma, V. Protasenko, S. Rouvimov, S. Bharadwaj, H. Xing, and D. Jena, Appl. Phys. Lett. 110, 041108 (2017).

    Article  Google Scholar 

  5. C. Liu, Y.K. Ooi, S.M. Islam, H. Xing, D. Jena, and J. Zhang, Appl. Phys. Lett. 112, 011101 (2018).

    Article  Google Scholar 

  6. H. Sun, M.K. Shakfa, M.M. Muhammed, B. Janjua, K. Li, R. Lin, T.K. Ng, I.S. Roqan, B.S. Ooi, and X. Li, ACS Photonics 5, 964 (2017).

    Article  Google Scholar 

  7. W. Guo, H. Sun, B. Torre, J.Q. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K. Li, and R. Lin, Adv. Func. Mater. 28, 1802395 (2018).

    Article  Google Scholar 

  8. K.B. Nam, M.L. Nakarmi, J. Li, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 83, 878 (2003).

    Article  CAS  Google Scholar 

  9. Y.H. Liang, and E. Towe, Appl. Phys. Rev. 5, 011107 (2018).

    Article  Google Scholar 

  10. Q. Wang, L. He, L. Wang, C. Li, and M. He, Opt. Commun. 478, 126380 (2020).

    Article  Google Scholar 

  11. L. Li, Y. Zhang, S. Xu, W. Bi, Z. Zhang, and H. Kuo, Materials 10, 1221 (2017).

    Article  Google Scholar 

  12. J. Piprek, and Z.M.S. Li, Appl. Phys. Lett. 102, 2217 (2013).

    Google Scholar 

  13. M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, J. Cryst. Growth 189, 528 (1998).

    Article  Google Scholar 

  14. Y.A. Yin, N. Wang, S. Li, Y. Zhang, and G. Fan, Appl. Phys. A. 119, 41 (2015).

    Article  CAS  Google Scholar 

  15. A. Pandey, W.J. Shin, X. Liu, and Z. Mi, Opt. Express. 27, A738 (2019).

    Article  CAS  Google Scholar 

  16. K. Kojima, K. Furusawa, Y. Yamazaki, H. Miyake, K. Hiramatsu, and S.F. Chichibu, Appl. Phys. Express 10, 015802 (2016).

    Article  Google Scholar 

  17. H. Yu, Q. Chen, Z. Ren, M. Tian, and H. Sun, IEEE Photonics J. 11, 1 (2019).

    Google Scholar 

  18. Y. Hou, Z. Guo, Y. Liu, M. Guo, J. Huang, and Z. Xu, Superlattice Microstruct. 107, 278 (2017).

    Article  CAS  Google Scholar 

  19. J.A. Davidson, P. Dawson, T. Wang, T. Sugahara, J.W. Orton, and S. Sakai, Semiconductor Sci. Tech. 15, 497 (2000).

    Article  CAS  Google Scholar 

  20. L. He, W. Zhao, K. Zhang, C. He, H. Wu, X. Liu, X. Luo, S. Li, and Z. Chen, Opt. Lett. 12, 062013.1 (2019).

    Google Scholar 

  21. J. Chen, T. Lu, H. Kuo, K.L. Fang, K.F. Huang, C.W. Kuo, C. Chang, C. Kuo, and S. Wang, IEEE Photonic Tech. Lett. 22, 860 (2010).

    Article  CAS  Google Scholar 

  22. Y. Kuo, J. Chang, F. Chen, Y. Shih, and H. Chang, IEEE J. Quantum Electron. 52, 1 (2016).

    Google Scholar 

  23. K. Tian, Q. Chen, C. Chu, M. Fang, L. Li, Y. Zhang, W. Bi, C. Chen, Z. Zhang and J. Dai, Phys. Status solidi-R.1700346 (2017).

  24. Z. Zhang, J. Kou, S.H. Chen, H. Shao, J. Che, C. Chu, K. Tian, Y. Zhang, W. Bi, and H. Kuo, Photonics Res. 7, B1 (2019).

    Article  CAS  Google Scholar 

  25. V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002).

    Article  CAS  Google Scholar 

  26. L. He, W. Zhao, K. Zhang, C. He, H. Wu, N. Liu, W. Song, Z. Chen, and S. Li, Opt. Lett. 43, 515 (2018).

    Article  CAS  Google Scholar 

  27. S.H. Wei, and A. Zunger, Appl. Phys. Lett. 69, 2719 (1996).

    Article  CAS  Google Scholar 

  28. M.A. Khan, N. Maeda, M. Jo, Y. Akamatsu, R. Tanabe, Y. Yamada, and H. Hirayama, J. Mater. Chem. C. 7, 143 (2019).

    Article  CAS  Google Scholar 

  29. I. Vurgaftman, and J.R. Meyer, J. Appl. Phys. 94, 3675 (2003).

    Article  CAS  Google Scholar 

  30. Y.K. Kuo, J.Y. Chang, H.T. Chang, F.M. Chen, Y.H. Shih, and B.T. Liou, IEEE J. Quantum Electron. 53, 1 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of Ministry of Science and Technology (Grant No. 2018YFB0406601), Key-Area Research and Development Program of Guangdong Province (No. 2020B010172001), the National Natural Science Foundation of China (61875187), the GDAS’ Project of Science and Technology Development (2019GDASYL-0105062, 2020GDASYL-20200103117, 2018GDASCX-0112, 2019GDASYL-0103072 and 2020GDASYL-20200104031), and the Pearl River S&T Nova Program of Guangzhou (Grant No. 201806010087), Guangzhou Municipal Science and Technology Bureau (201904010140), Natural Science Foundation of Guangdong Province (No. 2018A0303130334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 786 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, K., Li, C. et al. Modulating Carrier Distribution for Efficient AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Introducing an Asymmetric Quantum Well. J. Electron. Mater. 50, 2643–2648 (2021). https://doi.org/10.1007/s11664-021-08831-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08831-w

Keywords

Navigation