Skip to main content
Log in

First-Principles Study on the Structural, Electronic, Optical, Mechanical, and Adsorption Properties of Cubical Transition Metal Nitrides MN (M = Ti, Zr and Hf)

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Systematic investigation of structural, electronic, optical, mechanical, and adsorption properties of group-IV cubical transition metal nitrides MN (M = Ti, Zr and Hf) is presented in this paper. The structural characteristics, projected densities of states (PDOS), mechanical strength, optical, and adsorption properties have been calculated using first-principles based on density functional theory (DFT). The findings of the comparative and theoretical study showed that, amongst MN, HfN has comparatively higher optical conductivity. Its higher absorption coefficient and least reflectivity ensure the availability of adequate light on its surface. HfN is also found to be more thermally stable with cohesive energy of − 19.112 eV/atom and formation enthalpy of − 5.169 eV/atom. Further, the higher bulk modulus (286 GPa), Young’s modulus (600 GPa), and shear modulus (261 GPa) also ensured its remarkable mechanical strength. Apart from this, the calculated lower adsorption energy (2.3 eV) of H2O molecule over the surface of HfN showed an improved performance in the corrosive environment. The results give a clear indication that HfN may prove as an effective alternative candidate to be utilized in many modern bioelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors declare that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

References

  1. M. Birkholz, K.E. Ehwald, D. Wolansky, I. Costina, C. Baristiran-Kaynak, M. Fröhlich, H. Beyer, A. Kapp, and F. Lisdat, Surf. Coatings Technol. 204, 2055 (2010).

    CAS  Google Scholar 

  2. H. Hämmerle, K. Kobuch, K. Kohler, W. Nisch, H. Sachs, and M. Stelzle, Biomaterials 23, 797 (2002).

    Google Scholar 

  3. M. Birkholz, K.E. Ehwald, P. Kulse, J. Drews, M. Fröhlich, U. Haak, M. Kaynak, E. Matthus, K. Schulz, and D. Wolansky, Adv. Funct. Mater. 21, 1652 (2011).

    CAS  Google Scholar 

  4. L. Chen, J. Xu, M. Zhang, and Y. Zhang, Mater. Chem. Phys. 242, 122476 (2020).

    CAS  Google Scholar 

  5. H.G. Graf, C. Harendt, T. Engelhardt, C. Scherjon, K. Warkentin, H. Richter, and J.N. Burghartz, IEEE J. Solid-State Circuits 44, 281 (2009).

    Google Scholar 

  6. H. Watson, A.J. Cockbain, J. Spencer, A. Race, M. Volpato, P. Loadman, G. Toogood, and M.A. Hull, Prostaglandins Leukot. Essent. Fat. Acids 115, 60 (2016).

    CAS  Google Scholar 

  7. T. Hikov, M. Nikolova, and P. Petrov, J. Phys. Conf. Ser. 1492, (2020).

  8. A. Tiwari, and R.H. Talwekar, IETE J. Res. 65, 172 (2019).

    Google Scholar 

  9. J. Menghani, K.B. Pai, and M.K. Totlani, Tribol. - Mater. Surfaces Interfaces 5, 122 (2011).

    CAS  Google Scholar 

  10. S. Yu, Q. Zeng, A.R. Oganov, G. Frapper, B. Huang, H. Niu, and L. Zhang, RSC Adv. 7, 4697 (2017).

    CAS  Google Scholar 

  11. F. Guo, J. Wang, Y. Du, J. Wang, S.L. Shang, S. Li, and L. Chen, Appl. Surf. Sci. 452, 457 (2018).

    CAS  Google Scholar 

  12. P. Patsalas, Thin Solid Films 688, 1 (2019).

    Google Scholar 

  13. A. Courrech Arias, L. García González, J. Hernández Torres, T. Hernández Quiroz, and G. Galicia Aguilar, Adv. Mater. Res. 976, 93 (2014).

    Google Scholar 

  14. M. Braic, V. Braic, M. Balaceanu, C.N. Zoita, A. Kiss, A. Vladescu, A. Popescu, and R. Ripeanu, Mater. Chem. Phys. 126, 818 (2011).

    CAS  Google Scholar 

  15. A.D. Pogrebnjak, I.V. Yakushchenko, A.A. Bagdasaryan, O.V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V.M. Beresnev, and O.V. Sobol, Mater. Chem. Phys. 147, 1079 (2014).

    CAS  Google Scholar 

  16. C. Escobar, M. Villarreal, J. C. Caicedo, W. Aperador, and P. Prieto, Ing. e Investig. 34, (2014).

  17. C.A. Escobar, J.C. Caicedo, and W. Aperador, J. Phys. Chem. Solids 75, 23 (2014).

    CAS  Google Scholar 

  18. C. Martin, K.H. Miller, H. Makino, D. Craciun, D. Simeone, and V. Craciun, J. Nucl. Mater. 488, 16 (2017).

    CAS  Google Scholar 

  19. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, Materials (Basel). 8, 3128 (2015).

    CAS  Google Scholar 

  20. B. Karlsson, R.P. Shimshock, B.O. Seraphin, J.C. Haygarth, and B. Karlsson, Phys. Scr. 25, 775 (1982).

    CAS  Google Scholar 

  21. H. Gueddaoui, S. Maabed, G. Schmerber, M. Guemmaz, and J.C. Parlebas, Eur. Phys. J. B 60, 305 (2007).

    CAS  Google Scholar 

  22. E. Rudberg, E.H. Rubensson, and P. Sałek, J. Chem. Theory Comput. 7, 340 (2011).

    CAS  Google Scholar 

  23. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys Condens Matter 14, 2745 (2002).

    CAS  Google Scholar 

  24. R.Q. Zhang, Q.Z. Zhang, and M.W. Zhao, Theor. Chem. Acc. 112, 158 (2004).

    CAS  Google Scholar 

  25. DFT Calculations with Numerical Atomic Orbitals: the SIESTA method. http://www.uam.es/siesta DFT Calculations with Numerical Atomic Orbitals: the SIESTA Method. Accessed 14 January 2021.

  26. Persson, Kristin, and Project, Materials. Materials Data on TiN by Materials Project. https://www.osti.gov/dataexplorer/biblio/dataset/1208488. Accessed 14 January 2021.

  27. Persson, Kristin, and Project, Materials. Materials Data on HfN by Materials Project. https://www.osti.gov/dataexplorer/biblio/dataset/1202411. Accessed 14 January 2021.

  28. Persson, Kristin, and Project, Materials. Materials Data on ZrN by Materials Project. https://www.osti.gov/dataexplorer/biblio/dataset/1189641. Accessed 14 January 2021.

  29. Dr. Mohan L Verma, Optimization of Materials using SIESTA. https://www.youtube.com/watch?v=1kH3seyDRrk. Accessed 14 January 2021.

  30. E. Zahedi, and M. Hojamberdiev, Eur. Phys. J. B 90, 1 (2017).

    CAS  Google Scholar 

  31. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    CAS  Google Scholar 

  32. K. Chen, L.R. Zhao, J. Rodgers, and J.S. Tse, Alloying Effects on Elastic Properties of TiN-Based Nitrides 36, 2725 (2003).

    CAS  Google Scholar 

  33. G. Feldbauer, M. Wolloch, P.O. Bedolla, P. Mohn, J. Redinger, and A. Vernes, Phys. Rev. B Condens. Matter Mater. Phys. 91, 93 (2015).

    Google Scholar 

  34. B. Narayanan, K. Sasikumar, Z.G. Mei, A. Kinaci, F.G. Sen, M.J. Davis, S.K. Gray, M.K.Y. Chan, and S.K.R.S. Sankaranarayanan, J. Phys. Chem. C 120, 17475 (2016).

    CAS  Google Scholar 

  35. P.S. Nnamchi, Mater. Des. 108, 60 (2016).

    CAS  Google Scholar 

  36. X.L.X. Tan, and Y. Li, Mater. Rev. B 26, 123 (2012).

    Google Scholar 

  37. M. Hasegawa, and T. Yagi, J. Alloys Compd. 403, 131 (2005).

    CAS  Google Scholar 

  38. X.-J. Chen, V.V. Struzhkin, Z. Wu, M. Somayazulu, J. Qian, S. Kung, A. Nørlund Christensen, Y. Zhao, R.E. Cohen, H. Mao, and R.J. Hemley, PNAS 102, 3198 (2005).

    CAS  Google Scholar 

  39. Y.G. Zainulin, S.I. Alyamovskii, G.P. Shveikin, and P.V. Gel’d, Tepolfiz. Vys. Temp. 9, 496 (1971).

    Google Scholar 

  40. Galperin Y, ntroduction to modern solid state physics. 2002. http://wwwgradinetti.org/teaching/chem121/assests/. Acessed 18 Aug 2016.

  41. C. Kittel, Introduction to Solid State Physics, 7th ed., (John Willey: Newyork, 1996), pp. 245–246

    Google Scholar 

  42. A. Shigemi, and T. Wada, Jpn. J. Appl. Phys. 1 Regul. Pap. Short Notes Rev. Pap. 43, 6793 (2004).

    CAS  Google Scholar 

  43. Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, and I. Tanaka, Comput. Mater. Sci. 128, 140 (2017).

    CAS  Google Scholar 

  44. A. Togo, and I. Tanaka, Cond. Mat. Mtrl. sci. 1, 1 (2018).

    Google Scholar 

  45. R.G. Amorim, X. Zhong, S. Mukhopadhyay, R. Pandey, A.R. Rocha, and S.P. Karna, J. Phys. Condens. Matter 25, 195801 (2013).

    Google Scholar 

  46. S. Azam, J. Bila, H. Kamarudin, A.H. Reshak, and A.H. Reshak, Int. J. Elec. Chem. S. 9, 445 (2013).

    Google Scholar 

  47. L. Zhao, X. Zhang, C. Fan, Z. Liang, and P. Han, Phys. B Condens. Matter 407, 3364 (2012).

    CAS  Google Scholar 

  48. A. Pourghazi, and M. Dadsetani, Phys. B Condens. Matter 370, 35 (2005).

    CAS  Google Scholar 

  49. W.J. Ding, J.X. Yi, P. Chen, D.L. Li, L.M. Peng, and B.Y. Tang, Solid State Sci. 14, 555 (2012).

    CAS  Google Scholar 

  50. O.H. Nielsen, and R.M. Martin, Phys. Rev. B 32, 3792 (1985).

    CAS  Google Scholar 

  51. S. Daoud, K. Loucif, N. Bioud, and N. Lebgaa, Acta Phys. Pol. A 122, 109 (2012).

    CAS  Google Scholar 

  52. K. Born, and M. Huang, Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press, 1954), p. 432

    Google Scholar 

  53. D. Chen, Z. Chen, Y. Wu, M. Wang, N. Ma, and H. Wang, Comput. Mater. Sci. 91, 165 (2014).

    CAS  Google Scholar 

  54. W. Voigt, Lehrbuchde Kristallphysik, 1928th ed., (Berlin: Leipzig Berlin, 1946).

    Google Scholar 

  55. A. Reuss, and Z. Angew, Math. Mech 9, 49 (1929).

    CAS  Google Scholar 

  56. I.R. Shein, and A.L. Ivanovskii, J. Phys. Condens. Matter 20, 415218 (2008).

    Google Scholar 

  57. S. Sun, Y. Liu, H. Fu, X. Guo, S. Ma, J. Lin, G. Guo, Y. Lei, and R. Wang, Adv. Eng. Mater. 20, 18002095 (2018).

    Google Scholar 

  58. W. Bin, L. Ying, L. Yan, and W. Jinwen, Phys. B Condens. Matter 407, 2542 (2012).

    Google Scholar 

  59. J. Wang, Z. Chen, C. Li, F. Wang, and Y. Zhong, Adv Mater. Res. 415, 1451 (2012).

    Google Scholar 

  60. A. Srivastava, M. Gwalior, and B.D. Diwan, Can. J. Phys. 92, 1058 (2014).

    CAS  Google Scholar 

  61. C. Jimenez-Orozco, E. Florez, A. Moreno, P. Liu, and J.A. Rodriguez, Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/c6cp07400f

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the kind support of the management of Shri Shankaracharya Technical Campus-SSGI. Helpful discussions with Prof. Ravindra Pandey (Michigan Technological University, USA) are acknowledged.

Funding

This project is not funded by any of the agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Tiwari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A., Talwekar, R.H. & Verma, M.L. First-Principles Study on the Structural, Electronic, Optical, Mechanical, and Adsorption Properties of Cubical Transition Metal Nitrides MN (M = Ti, Zr and Hf). J. Electron. Mater. 50, 3312–3325 (2021). https://doi.org/10.1007/s11664-021-08814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08814-x

Keywords

Navigation