Skip to main content
Log in

Optical Characterization of Gallium Oxide α and β Polymorph Thin-Films Grown on c-Plane Sapphire

  • Topical Collection: 62nd Electronic Materials Conference 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the optical properties of thin-film α-Ga2O3 are examined and contrasted with those of β-Ga2O3 thin films grown on similar substrates. Thin films of α-Ga2O3 were synthesized employing mist chemical vapor deposition (mist CVD) on double-side polished c-plane sapphire. Optical properties were studied through absorbance, photoluminescence (PL), and photoluminescence excitation (PLE). Absorbance measurements showed spectra consistent with that previously reported in the literature, with Eg ~ 5.19 eV for α-Ga2O3. Despite an absorption edge laying at higher energies, the PL spectra in α-Ga2O3 films yield similar features to those of metal-organic chemical vapor deposition (MOCVD) grown β-Ga2O3 thin-films. In both cases, when excited above the band gap, the PL spectra consist of UV, UV′, blue and green broad bands. As the excitation photon energy was varied, the relative intensity of these PL bands changed. This is attributed to a non-uniform defect concentration distribution across the sample depth. With smaller concentration of defects associated with blue and green emission in the bulk compared to the surface in the α-phase films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Pearton, J. Yang, P.H. Cary IV, F. Ren, J. Kim, M.J. Tadjer, and M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018).

    Article  Google Scholar 

  2. S. Cho, J. Lee, I.Y. Park, and S. Kim, Jpn. J. Appl. Phys. 41, 5237 (2002).

    Article  CAS  Google Scholar 

  3. R. Kumaran, T. Tiedje, S.E. Webster, S. Penson, and W. Li, Opt. Lett. 35, 3793 (2010).

    Article  CAS  Google Scholar 

  4. H. Akazawa, Vacuum 123, 8 (2016).

    Article  CAS  Google Scholar 

  5. T. Kawaharamura, G.T. Dang, and M. Furuta, Jpn. J. Appl. Phys. 51, 040207 (2012).

    Google Scholar 

  6. G.T. Dang, T. Kawaharamura, M. Furuta, and M.W. Allen, IEEE Trans. Electron Dev. 62, 3640 (2015).

    Article  CAS  Google Scholar 

  7. G.T. Dang, M.W. Allen, M. Furuta, and T. Kawaharamura, Jpn. J. Appl. Phys. 58, 090606 (2019).

    Article  CAS  Google Scholar 

  8. Y. Oshima, E.G. Víllora, and K. Shimamura, Appl. Phys. Express 8, 055501 (2015).

    Article  Google Scholar 

  9. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, Phys. Rev. B 74, 195123 (2006).

    Article  Google Scholar 

  10. H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto, Mater. Lett. 205, 28 (2017).

    Article  CAS  Google Scholar 

  11. M. Kracht, A. Karg, M. Feneberg, J. Bläsing, J. Schörmann, R. Goldhahn, and M. Eickhoff, Phys. Rev. Appl. 10, 024047 (2018).

    Article  CAS  Google Scholar 

  12. C.-H. Ho, C.-Y. Tseng, and L.-C. Tien, Opt. Express 18, 16360 (2010).

    Article  CAS  Google Scholar 

  13. M. Yamaga, T. Ishikawa, M. Yoshida, T. Hasegawa, E.G. Villora, and K. Shimamura, Phys. Status Solidi. C 8, 2621 (2011).

    Article  CAS  Google Scholar 

  14. E.G. Víllora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, Jpn. J Appl. Phys. 41, L622 (2002).

    Article  Google Scholar 

  15. T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, Appl. Phys. Lett. 103, 041910 (2013).

    Article  Google Scholar 

  16. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, Jpn. J Appl. Phys. 54, 112601 (2015).

    Article  Google Scholar 

  17. F. Ricci, F. Boschi, A. Baraldi, A. Filippetti, M. Higashiwaki, A. Kuramata, V. Fiorentini, and R. Fornari, J. Phys. Condens. Matter. 28, 224005 (2016).

    Article  CAS  Google Scholar 

  18. Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, J. Catal. 250, 12 (2007).

    Article  CAS  Google Scholar 

  19. T. Harwig, F. Kellendonk, and S. Slappendel, J. Phys. Chem. Solids 39, 675 (1978).

    Article  CAS  Google Scholar 

  20. V. Vasil’tsiv, and Y.M. Zakharko, Sov. Phys. Solid State 25, 131 (1983).

    CAS  Google Scholar 

  21. Y. Wang, P.T. Dickens, J.B. Varley, X. Ni, E. Lotubai, S. Sprawls, F. Liu, V. Lordi, S. Krishnamoorthy, S. Blair, K.G. Lynn, M. Scarpulla, and B. Sensale-Roodriguez, Sci. Rep. 8, 18075 (2018).

    Article  Google Scholar 

  22. P. Deák, Q.D. Ho, F. Seemann, B. Aradi, M. Lorke, and T. Frauenheim, Phys. Rev. B 95, 075208 (2017).

    Article  Google Scholar 

  23. Y. Frodason, K. Johansen, L. Vines, and J. Varley, J. Appl. Phys. 127, 075701 (2020).

    Article  Google Scholar 

  24. Q.D. Ho, T. Frauenheim, and P. Deák, Phys. Rev. B 97, 115163 (2018).

    Article  CAS  Google Scholar 

  25. B. Kananen, N. Giles, L. Halliburton, G. Foundos, K. Chang, and K. Stevens, J. App. Phys. 122, 215703 (2017).

    Article  Google Scholar 

  26. M. Michling, and D. Schmeißer, IOP Conf. Ser. Mater. Sci. Eng. 34, 012002 (2012).

    Article  Google Scholar 

  27. T. Gake, Y. Kumagai, and F. Oba, Phys. Rev. Mater. 3, 044603 (2019).

    Article  CAS  Google Scholar 

  28. G.T. Dang, T. Yasuoka, Y. Tagashira, T. Tadokoro, W. Theiss, and T. Kawaharamura, Appl. Phys. Lett. 113, 062102 (2018).

    Article  Google Scholar 

  29. G.T. Dang, Y. Suwa, M. Sakamoto, L. Liu, P. Rutthongjan, S. Sato, T. Yasuoka, R. Hasegawa, and T. Kawaharamura, Appl. Phys. Express 11, 111101 (2018).

    Article  Google Scholar 

  30. D. Guo, X. Zhao, Y. Zhi, W. Cui, Y. Huang, Y. An, P. Li, Z. Wu, and W. Tang, Mater. Lett. 164, 364 (2016).

    Article  CAS  Google Scholar 

  31. R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, Appl. Phys. Express 8, 011101 (2015).

    Article  CAS  Google Scholar 

  32. S. Rafique, L. Han, A.T. Neal, S. Mou, J. Boeckl, and H. Zhao, Phys. Status Solidi A 215, 1700467 (2018).

    Article  Google Scholar 

  33. T. Harwig, and F.J.A. Kellendonk, J. Solid State Chem. 24, 255 (1978).

    Article  CAS  Google Scholar 

  34. R. Chen, and V. Pagonis, Thermally and Optically Stimulated Luminescence: A Simulation Approach, 1st ed., (West Sussex: Wiley, 2011).

    Book  Google Scholar 

  35. J. Solé, L. Bausa, and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, 1st ed., (West Sussex: Wiley, 2005).

    Book  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the funding provided by the Air Force Office of Scientific Research under Award No. FA9550-18-1- 0507 (Program Manager: Dr. Ali Sayir).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Ghadbeigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 873 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadbeigi, L., Cooke, J., Dang, G.T. et al. Optical Characterization of Gallium Oxide α and β Polymorph Thin-Films Grown on c-Plane Sapphire. J. Electron. Mater. 50, 2990–2998 (2021). https://doi.org/10.1007/s11664-021-08809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08809-8

Keywords

Navigation