Skip to main content
Log in

Dynamics and Decoherence of Exciton Polaron in Monolayer Transition Metal Dichalcogenides

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dynamics and decoherence of excitonic polaron in a two-dimensional monolayer transition metal dichalcogenides (TMDCs) in quantum dot have been investigated using a variational method. We focused on confinement and temperature effects on dynamics properties and decoherence of exciton polaron, and found that the entropy increases with increasing temperature and dot radius. We observed that due to temperature the lifetime decreases and exciton or polaron can exits independently in the system. The high mobility of exciton-polaron decreases when enhancing the temperature and dot radius. We show that the optical absorption of photon starts when the photon energy is twice the phonon energy. Among the TMDCs studied, we observed the lowest entropy for \({\text{WS}}_{2}\), the longest lifetime for \({\text{MoSe}}_{2}\), the highest mobility for \({\text{MoS}}_{2}\) and the greatest absorption for \({\text{MoS}}_{2}\). We have also determined the ranges of decoherence for each property, and it appears that the increase in temperature, dot radius and photon energy does not favor decoherence. It is seen that, in the decoherence phase, the system has lower disorder, higher amplitude of lifetime, mobility and absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Kormányos, V. Zolyomi, N. Drummond, and G. Burkard, Phys. Rev. X 4, 011034 (2014).

    Google Scholar 

  2. X.-X. Song, D. Liu, V. Mosallanejad, J. You, T.-Y. Han, D.-T. Chen, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, and G, Nanoscale 7, 40 (2015).

    Google Scholar 

  3. A.J. Pearce, and G. Burkard, 2D Mater. 4, 025114 (2017).

    Google Scholar 

  4. T. Georgiou, R. Jalil, D.B. Belle, L. Britnel, V.R. Gorbachev, V.S. Morozov, Y.-J. Kim, A. Gholinia, J.S. Haigh, O. Makarovsky, and L. Eaves, Nat. Nanotechnol. 8, 2 (2013).

    Google Scholar 

  5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 3 (2011).

    Google Scholar 

  6. J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M.J. Renn, T.P. Lodge, and C.D. Frisbie, Nat. Mater. 7, 11 (2008).

    Google Scholar 

  7. S. Mouri, Y. Miyauchi, and K. Matsuda, Nano Lett. 13, 5944 (2013).

    CAS  Google Scholar 

  8. K. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  9. K. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T. Heinz, and J. Shan, Nat. Mater. 12, 207 (2013).

    CAS  Google Scholar 

  10. D. Christiansen, M. Selig, G. Berghauser, R. Schmidt, I. Niehues, R. Schneider, A. Arora, S. Michaelis, R. Bratschitseh, E. Mallic, and A. Knorr, Phys. Rev. Lett. 119, 187402 (2017).

    Google Scholar 

  11. P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoglu, Phys. Rev. Lett. 120, 037401 (2018).

    CAS  Google Scholar 

  12. Y. Xiao, Z-Q. Li, and Z-W. Wang, J. Phys. Condens. Matter. 29, 485001 (2017).

    Google Scholar 

  13. M. Geddo and G. Iadonisi, Nuovo Cimento D 12, 1641–1650 (1990).

    Google Scholar 

  14. M.H. Degani, and O. Hipolito, Phys. Rev. B 35, 4507 (1987).

    CAS  Google Scholar 

  15. E.S. Koteles and J.Y. Chi, Phys. Rev. B 37, 6332 (1988).

    CAS  Google Scholar 

  16. J. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, Phys. Rev. B 30, 2253 (1984).

    CAS  Google Scholar 

  17. J.T. Devreese and F. Peeters, Polarons and Excitons in Polar Semiconductors and Ionic Crystals (Springer Science and Business Media, 2013).

  18. J. Singh, Excitation Energy Transfer Processes in Condensed Matter: Theory and Application (Springer Science and Business Media, 2013).

  19. E. Biolatti, R.C. Lotti, P. Zanardi, and F. Rossi, Phys. Rev. Lett. 85, 5647 (2000).

    CAS  Google Scholar 

  20. I. Favero, G. Cassabois, R. Ferreira, D. Darson, C. Voisin, J. Tianon, and C. Delalande, Phys. Rev. B 68, 233301 (2003).

    Google Scholar 

  21. B. Krummheuer, V.M. Axt, and T. Kuhn, Phys. Rev. B 65, 195313 (2002).

    Google Scholar 

  22. L. Jacak, P. Machnikowski, J. Krasnyj, and P. Zoller, Eur. Phys. J. D. https://doi.org/10.1140/epjd/e2003000202 (2003).

    Article  Google Scholar 

  23. M. Tiotsop, A.J. Fotue, G.K. Fautso, S.C. Kenfack, E. Mainimo , H.B. Fotsin, and L.C. Fai, Chin. J. Phys. 54, 795–801 (2016).

    CAS  Google Scholar 

  24. Z. Li, Indian J. Phys. 93, 6 (2018).

    Google Scholar 

  25. S. Xu, J. Cao, C. Miller, D. Mantell, R.J. Miller, and Y. Gao, Phys. Rev. Lett. 76, 483 (1996).

    CAS  Google Scholar 

  26. Y. Bai, J. Olivier, G. Bullard, C. Liu, and M. Therien, Proc. Natl. Acad. Sci USA 115, 4 (2018).

    Google Scholar 

  27. T. Valla, J. Camacho, Z. Pan, A. Fedorov, A. Walters, C. Howard, and M. Ellerby, Phys. Rev. Lett. 102, 107007 (2009).

    CAS  Google Scholar 

  28. J. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. Arias, P. Brouwer, and P. Mceuen, Nano. Lett. 4, 517 (2004).

    CAS  Google Scholar 

  29. K. Sellami, and S. Jaziri, Phys. Stat. Sol. c 3, 9 (2006).

    Google Scholar 

  30. S. Ono and S. Tomohiro, J. Appl. Phys. 124, 034301 (2018).

    Google Scholar 

  31. M. Tiotsop, A. Fotue, G. Fautso, S. Kenfack, H. Fotsin, and L. Fai, Superlattices Microstruct. 103, 70–77 (2017).

    CAS  Google Scholar 

  32. S. Kenfack, A. Fotue, F. Fobasso, G. Bawe, and L. Fai, Superlattices Microstruct. 111, 32–44 (2017).

    CAS  Google Scholar 

  33. D. Akay, Superlattices Microstruct. 117, 18–24 (2018).

    CAS  Google Scholar 

  34. B.S. Kandemir, and D. Akay, Phys. Stat. Solidi. B 225, 10 (2018).

    Google Scholar 

  35. A. Thilagam, Physica B 464, 44–50 (2015).

    CAS  Google Scholar 

  36. R. Khordad, Contin. Much. Thermodyn. 28, 947–956 (2016).

    CAS  Google Scholar 

  37. R. Khordad and H. R. Sedehi, Indian. J. Phys. 92, 979–984 (2018).

    CAS  Google Scholar 

  38. Y. Ge, W. Wenhui, Y. Ren, and Y. Liu, Phys. Rev. Res. 2, 013134 (2020).

    CAS  Google Scholar 

  39. P.-F. Li, and Z.-W. Wang, J. Appl. Phys. 123, 204308 (2018).

    Google Scholar 

  40. J.J. Hopfeld and A.V. Herz, Proc. Natl. Acad. Sci. USA 92, 6655–6662 (1995).

    Google Scholar 

  41. R. Khordad, and H.R. Sedehi, Indian J. Phys. 91, 7 (2017).

    Google Scholar 

  42. C. Tsallis, J. Stat. Phys. 52, 479–487 (1988).

    Google Scholar 

  43. D. Kozawa, R. Kumar, A. Carvalho, K. Amara, W. Zhao, S. Wang, M. Toh, R. Ribeiro, A.C. Neto, K. Matsuda, and G. Eda, Nat. Commun. 5, 4543 (2014).

    CAS  Google Scholar 

  44. M.J. Tomczak, K. Haule, T. Miyake, A. Georges, and G. Kotliar, Phys. Rev. B 82, 085104 (2010).

    Google Scholar 

  45. J. Devreese, W. Huybrechts, and L. Lemmes, Phys. Stat. Sol. B 48, 77 (1971).

    CAS  Google Scholar 

  46. R. Quinton, B. Tabibi, and F.J. Seo, J. Nanosci. Nanotechnol. 18, 3 (2018).

    Google Scholar 

  47. Z. Sun, and S. Stafstrom, J. Chem. Phys. 138, 64905 (2013).

    Google Scholar 

  48. L. Yuanshuang, L. Huanglong, Q. Cuicui, H. Xiangmin, and D. Liu, Nano Res. 13, 3 (2020).

    Google Scholar 

  49. N. Zhonghui, S. Yongliang, S. Qin, W. Yuhan, J. Hongzhu, Z. Qijing, C. Yang, M. Yuze, S. Fengqi, W. Xiaoyong, I. Turcu, W. Xinran, X. Yongbing, Y. Shi, J. Zhao, R. Zhang, and F. Wang, Commun. Phys. (2019). https://doi.org/10.1038/s420050190202.

    Article  Google Scholar 

  50. M.F. Jearvist, Phys. Rev. B 96, 195202 (2017).

    Google Scholar 

  51. F. Lengers, T. Kuhn, and D.E. Reiter, Phys. Rev. B 101, 155304 (2020).

    CAS  Google Scholar 

  52. S. Lukman, L. Ding, L. Xi, Y. Tao, A.C. Riis-jensen, G. Zhang, Q.Y.S. Wu, M. Yang, S. Luo, C. Hsu, L. Yao, G. Liang, H. Liu, Y.-W. Zhang, K.S. Thygesen, Q.J. Wang, Y. Feng, and J. Teng, Nat. Nanotechnol. (2020). https://doi.org/10.1038/s41565-020-0717-2.

    Article  Google Scholar 

  53. C. Hogni Kamban, and G. Thomas Pedersen, C. Hogni Kamban, and G. Thomas Pedersen, Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-62431-y.

    Article  Google Scholar 

  54. Z. Sun, J. Beaumariage, Q. Cao, K. Watanable, T. Taniguchi, B.M. Hunt, and D. Snoke, ACS Photonics 7, 7 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kenfack-Sadem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenfack-Sadem, C., Teguimfouet, A.K., Kenfack-Jiotsa, A. et al. Dynamics and Decoherence of Exciton Polaron in Monolayer Transition Metal Dichalcogenides. J. Electron. Mater. 50, 2911–2921 (2021). https://doi.org/10.1007/s11664-021-08808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08808-9

Keywords

Navigation