Skip to main content

Advertisement

Log in

Thermoelectric Performance Enhancement of n-type Chitosan-Bi2Te2.7Se0.3 Composite Films Using Heterogeneous Grains and Mechanical Pressure

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A cost-effective and sustainable approach was used to enhance the thermoelectric performance of printable thermoelectric composite films. Using this approach, we are trying to get rid of the highly energy-intensive (high temperature and long duration) and time-consuming process of manufacturing thermoelectric generators. This study presents a unique approach of using an environmental-friendly and naturally occurring binder, a heterogeneous particle size distribution and applied mechanical pressure to fabricate n-type thermoelectric composite films. Recently spotlighted biomaterial, chitosan, was employed as a binder and it provided enough binding strength to the composite thermoelectric films. Bi2Te2.7Se0.3 is an attractive n-type thermoelectric material because of its high thermoelectric performance. In this work, we are using two different (100-mesh and 325-mesh) n-type Bi2Te2.7Se0.3 thermoelectric conductive particles for thermoelectric composite films to understand the role of wide-range particle distribution on thermoelectric composite films. In addition, two different weight ratios (1:2000 and 1:5000) of binders to Bi2Te2.7Se0.3 particle and two different applied pressures (150 MPa and 200 MPa) were used for this study. The application of pressure and the use of a heterogenous particle distribution improves the packing density which leads to well-aggregated and coalesced polycrystal bulk-like structure in chitosan 100-mesh (heterogeneous particle distribution) Bi2Te2.7Se0.3 thermoelectric composite films and hence improves the overall electrical conductivity and power factor. The best performing composite film was made with an ink of a 1:2000 weight ratio of binder to100-mesh Bi2Te2.7Se0.3 and the applied pressure was 200 MPa. The electrical conductivity was 200 ± 7 S cm−1, the Seebeck coefficient was −201 ± 6 µV K−1, the power factor was 808 ± 69.7 μW m−1 K−2, the thermal conductivity was 0.6 W m−1 K−1, and the figure of merit was 0.4 at room temperature. Using energy efficient, sustainable, and cost effective method we achieved ZT of 0.40 for n-type thermoelectric composite films which is comparable to other printed n-type TE composite films. A 2-leg n-type Bi2Te2.7Se0.3 device was fabricated with a power output of 0.48 μW at a closed circuit voltage of 2.1 mV and ∆T of 12 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature, 2008, 451, p 163.

    Article  CAS  Google Scholar 

  2. D. Champier, Energy Convers. Manag., 2017, 140, p 167.

    Article  Google Scholar 

  3. G.J. Snyder, and E.S. Toberer, in Materials for Sustainable Energy. V. Dusastre Ed., Nature Publishing Group, London, 2010, p 101

    Chapter  Google Scholar 

  4. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling Infosearch Ltd., London, 1957, p 86–87

    Google Scholar 

  5. S.R. Hostler, Y.Q. Qu, M.T. Demko, A.R. Abramson, X. Qiu, and C. Burda, Superlattices Microstruct., 2008, 43, p 195.

    Article  CAS  Google Scholar 

  6. D.H. Kim, and T. Mitani, J. Alloys Compd., 2005, 399, p 14.

    Article  CAS  Google Scholar 

  7. D. Madan, Dissertation, University of California, 2013.

  8. S. LeBlanc, Sustain. Mater. Technol., 2014, 1–2, p 26.

    Google Scholar 

  9. T. V. Varghese, Dissertation, Boise State University, 2019.

  10. D. Madan, Z. Wang, A. Chen, R. Winslow, P.K. Wright, and J.W. Evans, Appl. Phys. Lett., 2014, 104, p 013902.

    Article  Google Scholar 

  11. D. Madan, Z. Wang, A. Chen, R.C. Juang, J. Keist, P.K. Wright, and J.W. Evans, ACS Appl. Mater. Interfaces, 2012, 4, p 6117.

    Article  CAS  Google Scholar 

  12. A. Chen, D. Madan, P.K. Wright, and J.W. Evans, J. Micromech. Microeng., 2011, 21, p 104006.

    Article  Google Scholar 

  13. D. Madan, A. Chen, P.K. Wright, and J.W. Evans, J. Electron. Mater., 2012, 41, p 1481.

    Article  CAS  Google Scholar 

  14. D. Madan, A. Chen, P.K. Wright, and J.W. Evans, J. Appl. Phys., 2011, 109, p 034904.

    Article  Google Scholar 

  15. D. Madan, Z. Wang, A. Chen, P.K. Wright, and J.W. Evans, ACS Appl. Mater. Interfaces, 2013, 5, p 11872.

    Article  CAS  Google Scholar 

  16. Z. Cao, M.J. Tudor, R.N. Torah, and S.P. Beeby, IEEE Trans. Electron Dev., 2016, 63, p 4024.

    Article  CAS  Google Scholar 

  17. A. Chen, D. Madan, M. Koplow, P. K. Wright, and J. W. Evans, in Technical Digest PowerMEMS Proceedings 2009, pp. 277–280.

  18. H. Choi, Y.J. Kim, C.S. Kim, H.M. Yang, M.W. Oh, and B.J. Cho, Nano Energy, 2018, 46, p 39.

    Article  CAS  Google Scholar 

  19. H. Choi, S.J. Kim, Y. Kim, J.H. We, M.-W. Oh, and B.J. Cho, J. Mater. Chem. C, 2017, 5, p 8559.

    Article  CAS  Google Scholar 

  20. S. Shin, R. Kumar, J.W. Roh, D.S. Ko, H.S. Kim, S.I. Kim, L. Yin, S.M. Schlossberg, S. Cui, J.M. You, S. Kwon, J. Zheng, J. Wang, and R. Chen, Sci. Rep., 2017, 7, p 1.

    Article  Google Scholar 

  21. E. Jang, A. Poosapati, N. Jang, L. Hu, M. Duffy, M. Zupan, and D. Madan, Sci. Rep., 2019, 9, p 1.

    Article  Google Scholar 

  22. K. Kishimoto, and T. Koyanagi, J. Appl. Phys., 2002, 92, p 2544.

    Article  CAS  Google Scholar 

  23. R. Ionescu, J. Jaklovszky, N. Nistor, and A. Chiculita, Phys. Status Solidi A, 1975, 27, p 27.

    Article  CAS  Google Scholar 

  24. C.B. Vining, W. Laskow, J.O. Hanson, R.R. Van der Beck, and P.D. Gorsuch, J. Appl. Phys., 1991, 69, p 4333.

    Article  CAS  Google Scholar 

  25. L.D. Zhao, B.P. Zhang, W.S. Liu, and J.F. Li, J. Appl. Phys., 2009, 105, p 023704.

    Article  Google Scholar 

  26. J. Hu, C. Zhang, C. Jiang, B. Feng, Q. Xiang, G. Li, Z. He, and Y. Li, Semicond. Sci. Technol., 2017, 32, p 075004.

    Article  Google Scholar 

  27. H. Li, H. Jing, Y. Han, G.Q. Lu, and L. Xu, Intermetallics, 2013, 43, p 16.

    Article  Google Scholar 

  28. M. Rinaudo, Prog. Polym. Sci., 2006, 31, p 603.

    Article  CAS  Google Scholar 

  29. A.P. Martínez-Camacho, M.O. Cortez-Rocha, J.M. Ezquerra-Brauer, A.Z. Graciano-Verdugo, F. Rodriguez-Felix, M.M. Castillo-Ortega, M.S. Yepiz-Gomez, and M. Plascencia-Jatomea, Carbohydr. Polym., 2010, 82, p 305.

    Article  Google Scholar 

  30. N. Mati-Baouche, P.H. Elchinger, H. De Baynast, G. Pierre, C. Delattre, and P. Michaud, Eur. Polym. J., 2014, 60, p 198.

    Article  CAS  Google Scholar 

  31. Y. Dong, Y. Ruan, H. Wang, Y. Zhao, and D. Bi, J. Appl. Polym. Sci., 2004, 93, p 1553.

    Article  CAS  Google Scholar 

  32. C.G.T. Neto, J.A. Giacometti, A.E. Job, F.C. Ferreira, J.L.C. Fonseca, and M.R. Pereira, Carbohydr. Polym., 2005, 62, p 97.

    Article  CAS  Google Scholar 

  33. D. Madan, Z. Wang, P.K. Wright, and J.W. Evans, Appl. Energy, 2015, 156, p 587.

    Article  CAS  Google Scholar 

  34. M. Schrade, H. Fjeld, T. Norby, and T.G. Finstad, Rev. Sci. Instrum., 2014, 85, p 103906.

    Article  Google Scholar 

  35. L. Abadlia, F. Gasser, K. Khalouk, M. Mayoufi, and J.G. Gasser, Rev. Sci. Instrum., 2014, 85, p 095121.

    Article  CAS  Google Scholar 

  36. A.T. Burkov, A. Heinrich, P.P. Konstantinov, T. Nakama, and K. Yagasaki, Meas. Sci. Technol., 2001, 12, p 264.

    Article  CAS  Google Scholar 

  37. X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z.F. Ren, Nano Lett., 2010, 10, p 3373.

    Article  CAS  Google Scholar 

  38. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B, 2005, 117, p 334.

    Article  Google Scholar 

  39. A. Celzard, J.F. Mareche, F. Payot, and G. Furdin, Carbon, 2002, 40, p 2801.

    Article  CAS  Google Scholar 

  40. Y.P. Mamunya, V.V. Davydenko, P. Pissis, and E.V. Lebedev, Eur. Polym. J., 2002, 38, p 1887.

    Article  CAS  Google Scholar 

  41. S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, and H.H. Hng, Appl. Phys. Lett., 2010, 96, p 182104.

    Article  Google Scholar 

  42. Y. Liu, Y. Zhang, K.H. Lim, M. Ibanez, S. Ortega, M. Li, J. David, S. Marti-Sanchez, K.M. Ng, J. Arbiol, M.V. Kovalenko, D. Cadavid, and A. Cabot, ACS Nano, 2018, 12, p 7174.

    Article  CAS  Google Scholar 

  43. A. Gharleghi, Y. Liu, M. Zhou, J. He, T.M. Tritt, and C.J. Liu, J. Mater. Chem. A, 2016, 4, p 13874.

    Article  CAS  Google Scholar 

  44. J.K. Lee, J.H. Son, S.D. Park, S. Park, and M.W. Oh, Mater. Lett., 2018, 230, p 211.

    Article  CAS  Google Scholar 

  45. F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang, and L. Chen, J. Alloys Compd., 2011, 509, p 4769.

    Article  CAS  Google Scholar 

  46. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling Infosearch Ltd., London, 1957, p 100–101

    Google Scholar 

  47. M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, J. Appl. Phys., 2008, 104, p 084302.

    Article  Google Scholar 

  48. L.D. Hicks, and M.S. Dresselhaus, Phys. Rev. B, 1993, 47, p 12727.

    Article  CAS  Google Scholar 

  49. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science, 2008, 320, p 634.

    Article  CAS  Google Scholar 

  50. S. Sahoo, V.R. Chitturi, R. Agarwal, J.W. Jiang, and R.S. Katiyar, ACS Appl. Mater. Interfaces, 2014, 6, p 22.

    Google Scholar 

  51. C.W. Nan, G. Liu, Y. Lin, and M. Li, C.W. Nan, G. Liu, Y. Lin, and M. Li, Appl. Phys. Lett., 2004, 85, p 3549.

    Article  CAS  Google Scholar 

  52. M.M. Mallick, A.G. Rosch, L. Franke, A. Gall, S. Ahmad, H. Gebwein, A. Mazilkin, C. Kubel, and U. Lemmer, J. Mater. Chem. A, 2020, 8, p 16366.

    Article  CAS  Google Scholar 

  53. C. Yu, Y.S. Kim, D. Kim, and J.C. Grunlan, Nano Lett., 2008, 8, p 4428.

    Article  CAS  Google Scholar 

  54. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater., 2015, 3, p 041506.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Aakash Satish from Reservoir High School and Preetham Gowni from Mount Hebron High School for their contributions in experimental work. The authors would also like to thanks Aswani Poosapati and Karla Negrette to help reviewing the manuscript. The authors would also like to thank Dr. Erin Lavik and their research group for letting us use Keyence microscope in their lab for density measurements This work was supported by Dr. Deepa Madan’s startup fund from University of Maryland Baltimore County, Baltimore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Madan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P., Jang, E., Huang, J. et al. Thermoelectric Performance Enhancement of n-type Chitosan-Bi2Te2.7Se0.3 Composite Films Using Heterogeneous Grains and Mechanical Pressure. J. Electron. Mater. 50, 2840–2851 (2021). https://doi.org/10.1007/s11664-021-08798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08798-8

Keywords

Navigation