Skip to main content

Advertisement

Log in

Band Structures Transformation in Two-Faced Janus Monolayer SnXY(X, Y = O, S, Se, and Te)

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In recent years, Janus single-layer materials have attracted researchers' interest due to their unique structures and potential applications. Inspired by the successful synthesis of Janus single-layer MoSSe, here we studied the electronic characteristics of Janus single-layer SnXY (X, Y = O, S, Se, and Te) through first-principles calculations. It is found that their parent configurations, SnX2 (X = O, S, Se and Te), have only two characteristics of indirect bandgap semiconductors and metals. However, the corresponding Janus single-layer structures are not only indirect bandgap semiconductors or metals but also direct bandgap semiconductors. This may be attributed to the difference contributions in the orbitals of each element to the total energy band between the parents and their corresponding Janus structures. Furthermore, by increasing alternative doping of Te atoms in SnS2 and SnSe2, the energy band can transform from indirect to direct bandgap semiconductors and then to metals. The tunable band structure makes Janus monolayer materials promising candidates for electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).

    Article  CAS  Google Scholar 

  3. L. Wang, Z.X. Cai, and J.Y. Wang, Nano. Lett. 8, 3640 (2008).

    Article  CAS  Google Scholar 

  4. S. Krompiewski, Nanotechnology 29, 385204 (2018).

    Article  CAS  Google Scholar 

  5. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, and A.K. Geim, Science 315, 1379 (2007).

    Article  CAS  Google Scholar 

  6. W.Y. He, Z.D. Chu, and L. He, Phys. Rev. Lett. 111, 066803 (2013).

    Article  Google Scholar 

  7. J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Nat. Commun. 7, 13352 (2016).

    Article  CAS  Google Scholar 

  8. S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Small. 11, 640 (2015).

    Article  CAS  Google Scholar 

  9. S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Angew. Chem. Int. Ed. Engl. 55, 1666 (2016).

    Article  CAS  Google Scholar 

  10. A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.Y. Chou, X. Zhang, and L.J. Li, Nat. Nanotechnol. 12, 744 (2017).

    Article  CAS  Google Scholar 

  11. X. Zhou, Q. Zhang, L. Gan, H. Li, J. Xiong, and T. Zhai, Adv. Sci. 3, 1600177 (2016).

    Article  Google Scholar 

  12. X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, Adv. Mater. 27, 8035 (2015).

    Article  CAS  Google Scholar 

  13. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).

    Article  Google Scholar 

  14. M. Mehboudi, B.M. Fregoso, Y. Yang, W. Zhu, A. van der Zande, J. Ferrer, L. Bellaiche, P. Kumar, and S. Barraza-Lopez, Phys. Rev. Lett. 117, 246802 (2016).

    Article  Google Scholar 

  15. M. Bernardi, Ma. Palummo, and J.C. Grossman, Nano. Lett. 13, 3664 (2013).

    Article  CAS  Google Scholar 

  16. Z. Huang, W. Zhang, and W. Zhang, Materials (Basel). 9(9), 716 (2016).

    Article  Google Scholar 

  17. C. Tan, and H. Zhang, Chem. Soc. Rev. 44, 2713 (2015).

    Article  CAS  Google Scholar 

  18. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  19. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  20. B. Radisavljevic, and A. Kis, Nat. Mater. 12, 815 (2013).

    Article  CAS  Google Scholar 

  21. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi, and J. Lou, ACS Nano 11, 8192 (2017).

    Article  CAS  Google Scholar 

  22. X.D. Duan, C. Wang, Z. Fan, G.L. Hao, L.Z. Kou, U. Halim, H.L. Li, X.P. Wu, Y.C. Wang, J.H. Jiang, A.L. Pan, Y. Huang, R.Q. Yu, and X.F. Duan, Nano. Lett. 16, 264 (2016).

    Article  CAS  Google Scholar 

  23. T.X. Wang, L.Z. Yin, R.M. Zhao, C.X. Xia, X. Zhao, Y.P. An, S.Y. Wei, and X.Q. Dai, Appl. Surf. Sci. 457, 256 (2018).

    Article  CAS  Google Scholar 

  24. S.D. Guo, X.S. Guo, R.Y. Han, and Y. Deng, Phys. Chem. Chem. Phys. 21, 24620 (2019).

    Article  CAS  Google Scholar 

  25. W. Shi, and Z. Wang, J. Phys. Condens. Matter. 30, 215301 (2018).

    Article  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  27. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  28. W. Zhao, B. Dong, Z. Guo, G. Su, R. Gao, W. Wang, and L. Cao, Chem. Commun. (Camb.) 52, 9228 (2016).

    Article  CAS  Google Scholar 

  29. C.X. Xia, Y.T. Peng, H. Zhang, T.X. Wang, S.Y. Wei, and Y. Jia, Phys. Chem. Chem. Phys. 16, 19674 (2014).

    Article  CAS  Google Scholar 

  30. G.E. Chang, S.W. Chang, and S.L. Chuang, Opt. Express 17, 11246 (2009).

    Article  CAS  Google Scholar 

  31. W. Wan, Y. Li, X. Ren, Y. Zhao, F. Gao, and H. Zhao, Nanomaterials (Basel). 8, 112 (2018).

    Article  Google Scholar 

  32. D.D. Yu, Y.Y. Liu, L.L. Sun, and P. Wu, Phys. Chem. Chem. Phys. 18, 318 (2016).

    Article  CAS  Google Scholar 

  33. A. Shafique, A. Samad, and Y.H. Shin, Phys. Chem. Chem. Phys. 19, 20677 (2017).

    Article  CAS  Google Scholar 

  34. L.H. Qu, J. Yu, Y.L. Mu, X.L. Fu, C.G. Zhong, Y. Min, P.X. Zhou, J.M. Zhang, Y.Q. Zou, and T.S. Lu, Mater. Res. Bull. 119, 110533 (2019).

    Article  CAS  Google Scholar 

  35. Y.D. Guo, H.B. Zhang, H.L. Zeng, H.X. Da, X.H. Yan, W.Y. Liu, and X.Y. Mou, Phys. Chem. Chem. Phys. 20, 21113 (2018).

    Article  CAS  Google Scholar 

  36. Q. Zhang, T.Y. Xin, X.K. Lu, and Y.X. Wang, Materials (Basel). 11(3), 431 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11504180, 61974068), Special Funds of the National Natural Science Foundation of China (11947101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Meng or Chunsheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Meng, L., He, J. et al. Band Structures Transformation in Two-Faced Janus Monolayer SnXY(X, Y = O, S, Se, and Te). J. Electron. Mater. 50, 2504–2509 (2021). https://doi.org/10.1007/s11664-021-08750-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08750-w

Keywords

Navigation