Skip to main content
Log in

Electrochemical Synthesis of Covalently Bonded Poly (3, 4-dioxyethylthiophene)–Carbon Nanotubes Composite with Enhanced Electrochromic Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A Poly (3, 4-dioxyethylthiophene)–Carbon Nanotubes (PEDOT–CNT) composite electrochromic material, connected by interfacial covalent bonds, was successfully synthesized by electrochemical copolymerization of 3, 4-dioxyethylthiophene with thiophene-2-methylamine functionalized CNT. The molecular and aggregate structures of PEDOT–CNT were investigated by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The electrochemical behavior and electrochromic properties of PEDOT–CNT were measured by CV (cyclic voltammetry), UV–Vis (ultraviolet visible spectroscopy) and EIS (electrochemical impedance spectroscopy). The test results show that the electrochromic performance of PEDOT–CNT is better than that of neat PEDOT. As the percentage of carbon nanotubes increases, the contrast and response speed of the composites increase accordingly. The PEDOT film has a contrast under square-wave potential of 0.54, a coloring time of 6.42 s, and a fading time of 2.54 s. Compared with PEDOT, the contrasts of PEDOT–CNT-3%, PEDOT–CNT-5% and PEDOT–CNT-7% are increased by 31%, 33%, and 89%, respectively. The response speeds of PEDOT–CNT-5% increase to coloring time of 3.51 s and fading time of 1.37 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Shirakawa, H. Shirakawa, Appl. Phys., 2001, 1, p 281.

    Google Scholar 

  2. H. Shirakawa, A.G. MacDiarmid, and A.J. Heeger, H. Shirakawa, A.G. MacDiarmid, and A.J. Heeger, J. Chem. Soc. Chem. Commun., 1977, 16, p 578.

    Article  Google Scholar 

  3. K. Akagi, K. Akagi, Bull. Chem. Soc. Jpn., 2019, 92, p 1509.

    Article  CAS  Google Scholar 

  4. Y. Yang, W. Yuan, S. Li, X. Yang, J. Xu, and Y. Jiang, Y. Yang, W. Yuan, S. Li, X. Yang, J. Xu, and Y. Jiang, Electrochim. Acta, 2015, 165, p 323.

    Article  CAS  Google Scholar 

  5. T. Sakata, N. Ikeda, T. Koganezawa, D. Kajiya, and K.I. Saitow, T. Sakata, N. Ikeda, T. Koganezawa, D. Kajiya, and K.I. Saitow, J. Phys. Chem. C, 2019, 123, p 20130.

    Article  CAS  Google Scholar 

  6. H. Zhou, J. Cui, J. Guo, S. Tao, X. Gao, M. Liu, and M. Wang, H. Zhou, J. Cui, J. Guo, S. Tao, X. Gao, M. Liu, and M. Wang, ACS Omega, 2019, 4, p 15097.

    Article  CAS  Google Scholar 

  7. H. Zhang, and P.K. Shen, H. Zhang, and P.K. Shen, Chem. Rev., 2012, 112, p 2780.

    Article  CAS  Google Scholar 

  8. Y.J. Wang, D.P. Wilkinson, and J. Zhang, Y.J. Wang, D.P. Wilkinson, and J. Zhang, Chem. Rev., 2011, 111, p 7625.

    Article  CAS  Google Scholar 

  9. C. Song, Z. Zhong, Z. Hu, J. Wang, L. Wang, L. Ying, J. Wang, and Y. Cao, C. Song, Z. Zhong, Z. Hu, J. Wang, L. Wang, L. Ying, J. Wang, and Y. Cao, Org. Electron., 2016, 28, p 252.

    Article  CAS  Google Scholar 

  10. L. Zhao, S. Wang, J. Ding, and L. Wang, L. Zhao, S. Wang, J. Ding, and L. Wang, ACS Omega, 2019, 4, p 15923.

    Article  CAS  Google Scholar 

  11. W.H. Kim, A.J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, and Z.H. Kafafi, W.H. Kim, A.J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, and Z.H. Kafafi, Appl. Phys. Lett., 2002, 80, p 3844.

    Article  CAS  Google Scholar 

  12. S. Nambiar, and J.T. Yeow, S. Nambiar, and J.T. Yeow, Biosens. Bioelectron., 2011, 26, p 1825.

    Article  CAS  Google Scholar 

  13. J.M. Moon, N. Thapliyal, K.K. Hussain, R.N. Goyal, and Y.B. Shim, J.M. Moon, N. Thapliyal, K.K. Hussain, R.N. Goyal, and Y.B. Shim, Biosens. Bioelectron., 2018, 102, p 540.

    Article  CAS  Google Scholar 

  14. R. Yuksel, S.C. Cevher, A. Cirpan, L. Toppare, and H.E. Unalan, R. Yuksel, S.C. Cevher, A. Cirpan, L. Toppare, and H.E. Unalan, J. Electrochem. Soc., 2015, 162, p 2805.

    Article  CAS  Google Scholar 

  15. R. Yuksel, A. Ekber, J. Turan, E. Alpugan, S.O. Hacioglu, L. Toppare, A. Cirpan, G. Gunbas, and H.E. Unalan, R. Yuksel, A. Ekber, J. Turan, E. Alpugan, S.O. Hacioglu, L. Toppare, A. Cirpan, G. Gunbas, and H.E. Unalan, Electroanalysis, 2018, 30, p 266.

    Article  CAS  Google Scholar 

  16. S. Xiong, N. Yang, X. Zhang, R. Wang, Y. Lu, H. Li, J. Liu, and S. Li, S. Xiong, N. Yang, X. Zhang, R. Wang, Y. Lu, H. Li, J. Liu, and S. Li, J. Electron. Mater., 2019, 48, p 6666.

    Article  CAS  Google Scholar 

  17. S. Xiong, X. Zhang, R. Wang, Y. Lu, H. Li, J. Liu, S. Li, Z. Qiu, B. Wu, and J. Chu, S. Xiong, X. Zhang, R. Wang, Y. Lu, H. Li, J. Liu, S. Li, Z. Qiu, B. Wu, and J. Chu, J. Polym. Res., 2019, 26, p 4.

    Article  CAS  Google Scholar 

  18. J. Lin, S. Yan, X. Zhang, Y. Liu, J. Lian, H. Lin, and S. Han, J. Lin, S. Yan, X. Zhang, Y. Liu, J. Lian, H. Lin, and S. Han, Nano, 2019, 14, p 4.

    Google Scholar 

  19. J. Lin, Y. Zheng, Q. Du, M. He, and Z. Deng, J. Lin, Y. Zheng, Q. Du, M. He, and Z. Deng, Nano, 2013, 08, p 1350004.

    Article  CAS  Google Scholar 

  20. N. Suganya, V. Jaisankar, and E.K.T. Sivakumar, N. Suganya, V. Jaisankar, and E.K.T. Sivakumar, Int. J. Nanosci., 2017, 17, p 1760003.

    Article  CAS  Google Scholar 

  21. M.V. Kiamahalleh, S.H.S. Zein, G. Najafpour, S.A. Sata, and S. Buniran, M.V. Kiamahalleh, S.H.S. Zein, G. Najafpour, S.A. Sata, and S. Buniran, Nano, 2012, 7, p 1230002.

    Article  Google Scholar 

  22. T. Chen, G. Wang, and Q. Ning, T. Chen, G. Wang, and Q. Ning, Nano, 2017, 12, p 1750061.

    Article  CAS  Google Scholar 

  23. J. Kim, J.H. Kim, and K. Ariga, J. Kim, J.H. Kim, and K. Ariga, Joule, 2017, 1, p 739.

    Article  CAS  Google Scholar 

  24. J. Zhou, and G. Lubineau, J. Zhou, and G. Lubineau, ACS Appl. Mater. Interfaces, 2013, 5, p 6189.

    Article  CAS  Google Scholar 

  25. S. Xiong, P. Jia, K.Y. Mya, J. Ma, F. Boey, and X. Lu, S. Xiong, P. Jia, K.Y. Mya, J. Ma, F. Boey, and X. Lu, Electrochim. Acta, 2008, 53, p 3523.

    Article  CAS  Google Scholar 

  26. S. Xiong, J. Ma, and X. Lu, S. Xiong, J. Ma, and X. Lu, Sol. Energy Mater. Sol. Cells, 2009, 93, p 2113.

    Article  CAS  Google Scholar 

  27. S. Xiong, Y. Wang, Y. Lu, H. Li, J. Liu, S. Li, and R. Zhang, S. Xiong, Y. Wang, Y. Lu, H. Li, J. Liu, S. Li, and R. Zhang, Polym. Bull., 2017, 75, p 3427.

    Article  CAS  Google Scholar 

  28. S. Xiong, R. Wang, S. Li, B. Wu, J. Chu, and M. Gong, S. Xiong, R. Wang, S. Li, B. Wu, J. Chu, and M. Gong, J. Electron. Mater., 2018, 47, p 3974.

    Article  CAS  Google Scholar 

  29. T. Hwang, H. Lee, H. Kim, G. Kim, and G. Mun, T. Hwang, H. Lee, H. Kim, G. Kim, and G. Mun, Surf. Rev. Lett., 2010, 17, p 39.

    Article  CAS  Google Scholar 

  30. M. Farasat, M.M. Golzan, K. Farhadi, S.H.R. Shojaei, and S. Gheisvandi, M. Farasat, M.M. Golzan, K. Farhadi, S.H.R. Shojaei, and S. Gheisvandi, Mod. Phys. Lett. B, 2016, 30, p 1650175.

    Article  CAS  Google Scholar 

  31. X. Wang, J. Lu, J. Li, X. Jing, and F. Wang, X. Wang, J. Lu, J. Li, X. Jing, and F. Wang, Electroact. Polym. Corros Control, 2003, 843, p 254.

    Article  CAS  Google Scholar 

  32. Y. Zhao, J. Ma, K. Chen, C. Zhang, C. Yao, S. Zuo, and Y. Kong, Y. Zhao, J. Ma, K. Chen, C. Zhang, C. Yao, S. Zuo, and Y. Kong, Nano, 2017, 12, p 1750056.

    Article  CAS  Google Scholar 

  33. E.J. Heller, Y. Yang, and L. Kocia, E.J. Heller, Y. Yang, and L. Kocia, ACS Cent. Sci., 2015, 1, p 40.

    Article  CAS  Google Scholar 

  34. E.J. Moorhead, and A.G. Wenzel, E.J. Moorhead, and A.G. Wenzel, J. Chem. Educ., 2009, 86, p 973.

    Article  CAS  Google Scholar 

  35. M. Maruthapandi, A.P. Nagvenkar, I. Perelshtein, and A. Gedanken, M. Maruthapandi, A.P. Nagvenkar, I. Perelshtein, and A. Gedanken, ACS Appl. Polym. Mater., 2019, 1, p 1181.

    Article  CAS  Google Scholar 

  36. T.G. Yun, B.I. Hwang, D. Kim, S. Hyun, and S.M. Han, T.G. Yun, B.I. Hwang, D. Kim, S. Hyun, and S.M. Han, ACS Appl. Mater. Interfaces, 2015, 7, p 9228.

    Article  CAS  Google Scholar 

  37. Y. Qian, M. Guo, C. Li, K. Bi, and Y. Chen, Y. Qian, M. Guo, C. Li, K. Bi, and Y. Chen, ACS Appl. Mater. Interfaces, 2019, 11, p 30470.

    Article  CAS  Google Scholar 

  38. S. Velayudham, C.H. Lee, M. Xie, D. Blair, N. Bauman, Y.K. Yap, and H. Liu, S. Velayudham, C.H. Lee, M. Xie, D. Blair, N. Bauman, Y.K. Yap, and H. Liu, ACS Appl. Mater. Interfaces, 2010, 2, p 104.

    Article  CAS  Google Scholar 

  39. R. Zeng, Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, and Y. Chen, R. Zeng, Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, and Y. Chen, ACS Sustain. Chem. Eng., 2019, 7, p 11540.

    Article  CAS  Google Scholar 

  40. Y.F. Lin, C.H. Chen, W.J. Xie, S.H. Yang, M.T. Lin, and W.B. Jian, Y.F. Lin, C.H. Chen, W.J. Xie, S.H. Yang, M.T. Lin, and W.B. Jian, ACS Nano, 2011, 5, p 1541.

    Article  CAS  Google Scholar 

  41. E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, and G. Perale, E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, and G. Perale, J. Med. Chem., 2020, 63, p 1.

    Article  CAS  Google Scholar 

  42. R. Malavé-Osuna, V. Hernández, J.T. López-Navarrete, E.I. Kauppinen, and V. Ruiz, R. Malavé-Osuna, V. Hernández, J.T. López-Navarrete, E.I. Kauppinen, and V. Ruiz, J. Phys. Chem. Lett., 2010, 1, p 1367.

    Article  CAS  Google Scholar 

  43. H.W.M. Fung, S. So, K. Kartub, and R.M. Corn, H.W.M. Fung, S. So, K. Kartub, and R.M. Corn, J. Phys. Chem. C, 2018, 123, p 762.

    Article  CAS  Google Scholar 

  44. J.F. Ponder, A.M. Österholm, and J.R. Reynolds, J.F. Ponder, A.M. Österholm, and J.R. Reynolds, Macromolecules, 2016, 49, p 2106.

    Article  CAS  Google Scholar 

  45. L.G. Carleton, M.W. Dean, R.D. Rauh, and J.R. Reynolds, L.G. Carleton, M.W. Dean, R.D. Rauh, and J.R. Reynolds, Chem. Mater., 2002, 14, p 3964.

    Article  CAS  Google Scholar 

  46. B. Abidin, G. Gorkem, D. Asuman, and T. Levent, B. Abidin, G. Gorkem, D. Asuman, and T. Levent, Chem. Mater., 2008, 20, p 7510.

    Article  CAS  Google Scholar 

  47. N. Eguchi, and H. Goto, N. Eguchi, and H. Goto, ACS Appl. Mater. Interfaces, 2019, 11, p 30163.

    Article  CAS  Google Scholar 

  48. B. Kim, J. Kim, and E. Kim, B. Kim, J. Kim, and E. Kim, Macromolecules, 2011, 44, p 8791.

    Article  CAS  Google Scholar 

  49. F. Wang, S.W. Michael, and R.D. Rauh, F. Wang, S.W. Michael, and R.D. Rauh, Macromolecules, 2000, 33, p 2083.

    Article  CAS  Google Scholar 

  50. S. Bhandari, M. Deepa, A.K. Srivastava, C. Lal, and R. Kant, S. Bhandari, M. Deepa, A.K. Srivastava, C. Lal, and R. Kant, Macromol. Rapid Commun., 2009, 30, p 138.

    Article  CAS  Google Scholar 

  51. R. Allen, L. Pan, G.G. Fuller, Z. Bao, and A.C.S. Appl, R. Allen, L. Pan, G.G. Fuller, Z. Bao, and A.C.S. Appl, Mater. Interfaces, 2014, 6, p 9966.

    Article  CAS  Google Scholar 

  52. G.M. Spinks, B. Xi, V.T. Truong, and G.G. Wallace, G.M. Spinks, B. Xi, V.T. Truong, and G.G. Wallace, Synth. Met., 2005, 151, p 85.

    Article  CAS  Google Scholar 

  53. F. Hu, B. Yan, G. Sun, J.L. Xu, Y. Gu, S. Lin, S. Chen, and A.C.S. Appl, F. Hu, B. Yan, G. Sun, J.L. Xu, Y. Gu, S. Lin, S. Chen, and A.C.S. Appl, Nano Mater., 2019, 2, p 3154.

    CAS  Google Scholar 

  54. E.C. Cho, C.P. Li, J.H. Huang, K.C. Lee, and J.H. Huang, E.C. Cho, C.P. Li, J.H. Huang, K.C. Lee, and J.H. Huang, ACS Appl. Mater. Interfaces, 2015, 7, p 11668.

    Article  CAS  Google Scholar 

  55. K.Y. Shen, C.W. Hu, L.C. Chang, and K.C. Ho, K.Y. Shen, C.W. Hu, L.C. Chang, and K.C. Ho, Sol. Energy Mater. Sol. Cells, 2012, 98, p 294.

    Article  CAS  Google Scholar 

  56. S. Reddy, Q. Xiao, H. Liu, C. Li, C. Wang, K. Chiu, S. Ramakrishna, and L. He, S. Reddy, Q. Xiao, H. Liu, C. Li, C. Wang, K. Chiu, S. Ramakrishna, and L. He, ACS Appl. Mater. Interfaces, 2019, 11, p 18254.

    Article  CAS  Google Scholar 

  57. S. Xiong, R. Wang, X. Zhang, Y. Wu, Z. Xu, and Z. Chen, S. Xiong, R. Wang, X. Zhang, Y. Wu, Z. Xu, and Z. Chen, ChemistrySelect, 2019, 4, p 543.

    Article  CAS  Google Scholar 

  58. S. Xiong, Z. Li, M. Gong, X. Wang, J. Fu, Y. Shi, and J. Chu, S. Xiong, Z. Li, M. Gong, X. Wang, J. Fu, Y. Shi, and J. Chu, Electrochim. Acta, 2014, 138, p 101.

    Article  CAS  Google Scholar 

  59. D. Tasis, N. Tagmatarchis, V. Georgakilas, and M. Prato, D. Tasis, N. Tagmatarchis, V. Georgakilas, and M. Prato, Chemistry, 2003, 9, p 4000.

    Article  CAS  Google Scholar 

  60. F. Jia, R. Wu, C. Liu, J. Lan, Y. Lin, and X. Yang, F. Jia, R. Wu, C. Liu, J. Lan, Y. Lin, and X. Yang, ACS Sustain. Chem. Eng., 2019, 7, p 12591.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 52073227) and Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT201804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanxin Xiong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, S., Zhang, J., Wang, X. et al. Electrochemical Synthesis of Covalently Bonded Poly (3, 4-dioxyethylthiophene)–Carbon Nanotubes Composite with Enhanced Electrochromic Properties. J. Electron. Mater. 50, 2389–2399 (2021). https://doi.org/10.1007/s11664-021-08741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08741-x

Keywords

Navigation