Skip to main content
Log in

Synthesis, Characterization and Luminescent Properties of Mixed-Ligand Nickel Complexes for Opto-Electronic Application

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports the synthesis of a mixed ligand nickel complexes as an emissive layer in organic light emitting diode applications. Synthesized ligand and nickel complexes were characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, mass spectroscopy, x-ray powder diffraction and scanning electron microscopy. This compound shows good thermal stability and film forming properties. Optical properties have been studied by UV–vis and photoluminescence (PL). Frontier molecular orbital theory energy levels of these compounds were demonstrated using density functional theory calculations. Photoluminescence (PL) emission peaks of complexes (1) and (2) show at 596 nm and 581 nm in solid state, respectively. The structure of the fabricated multi-layered device is: ITO/αNPD(300 Å)/(1)(350 Å)/BCP(60 Å)/Alq3(280 Å)/LiF(10 Å)Al(1500 Å) and ITO/αNPD(300 Å)/(2)(350 Å)/BCP(60 Å)/Alq3(280 Å)/LiF(10 Å)Al(1500 Å). Electroluminescence emission of devices (1) and (2) containing nickel complexes as the emissive layer emit at 568 nm and 561 nm, respectively. Commission Internationale de l’Eclairage chromaticity colour coordinates of devices (1) and (2) were found to be x = 0.426, y = 0.425 and x = 0.473, y = 0.447, respectively, which emits an orange colour. These results show that these nickel complexes can act as a promising emissive layer in opto-electronic applications as strong electroluminescent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Dhanakodi, M. Jayandran, and V. Balasubramanian, J. Am. Chem. Soc. 132, 3133 (2010).

    Article  CAS  Google Scholar 

  2. H.J. Son, W.S. Han, J.Y. Chun, B.K. Kang, S.N. Kwon, J. Ko, S.J. Han, C. Lee, S.J. Kim, and S.O. Kang, Inorg. Chem. 47, 5666 (2008).

    Article  CAS  Google Scholar 

  3. X. Xu, Y. Liao, G. Yu, H. You, C. Di, Z. Su, D. Ma, Q. Wang, S. Li, S. Wang, J. Ye, and Y. Liu, Chem. Mater. 19, 1740 (2007).

    Article  CAS  Google Scholar 

  4. D. Verma, R. Dash, K.S. Katti, D.L. Schulz, and A.N. Caruso, Spectrochim. Acta, Part A 70, 1180 (2008).

    Article  CAS  Google Scholar 

  5. C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, and L. Nicole, Comptes Rendus Chim. 13, 3 (2010).

    Article  CAS  Google Scholar 

  6. J.V. Barth, Surf. Sci. 603, 1533 (2009).

    Article  CAS  Google Scholar 

  7. B. Brauer, D.R.T. Zahn, T. Ruffer, and G. Salvan, Chem. Phys. Lett. 432, 226 (2006).

    Article  CAS  Google Scholar 

  8. Y. Qiu, Y. Shao, D.Q. Zhang, and X.Y. Hong, Jpn. J. Appl. Phys. 39, 1151 (2000).

    Article  CAS  Google Scholar 

  9. M. Kim, J.S. Kim, D.M. Shin, Y.K. Kim, and Y. Ha, Bull. Kor. Chem. Soc. 22, 743 (2001).

    CAS  Google Scholar 

  10. H. Kunkely and A. Vogler, Inorg. Chim. Acta 321, 171 (2001).

    Article  CAS  Google Scholar 

  11. M. Carrard, S. Goncalves-Conto, L. Si-Ahmed, D. Ades, A. Siove, and A. Siove, Thin Solid Films 352, 189 (1999).

    Article  CAS  Google Scholar 

  12. L. Feng and Z. Chen, Polymer 46, 3952 (2005).

    Article  CAS  Google Scholar 

  13. M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, J. Appl. Phy. 113, 113105 (2013).

    Article  CAS  Google Scholar 

  14. W.K. Hu, S.H. Li, X.F. Ma, S.X. Zhou, Q.F. Zhang, J.Y. Xu, P. Shi, B.H. Tong, M.K. Fung, and L. Fu, Dyes Pigments. 150, 284 (2018).

    Article  CAS  Google Scholar 

  15. L. Duan, L. Hou, T.W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, and Y. Qiu, J. Mater. Chem. 20, 6392 (2010).

    Article  CAS  Google Scholar 

  16. S. Tang, W. Li, F. Shen, D. Liu, B. Yang, and Y. Ma, J. Mater. Chem. 22, 4401 (2012).

    Article  CAS  Google Scholar 

  17. S. Xue, L. Yao, S. Liu, C. Gu, F. Shen, W. Li, H. Zheng, H. Wu, and Y. Ma, J. Mater. Chem. 22, 21502 (2012).

    Article  CAS  Google Scholar 

  18. P. Morvillo, R. Ricciardi, G. Nenna, E. Bobeico, R. Diana, and C. Minarini, Sol. Energy Mater. 152, 51 (2016).

    Article  CAS  Google Scholar 

  19. P. Morvillo, R. Diana, R. Ricciardi, E. Bobeico, and C. Minarini, J. Sol. Gel Sci. Technol. 73, 550 (2015).

    Article  CAS  Google Scholar 

  20. T.V. Laine, U. Piironen, K. Lappalainen, M. Klinga, E. Aitola, and M. Leskela, J. Organomet. Chem. 606, 112 (2000).

    Article  CAS  Google Scholar 

  21. R. Chen and S.F. Mapolie, J. Mol. Catal. A: Chem. 193, 33 (2003).

    Article  CAS  Google Scholar 

  22. R. Diana, B. Panunzi, A. Tuzi, and U. Caruso, J. Mol. Str. 1197, 6720 (2019).

    Article  CAS  Google Scholar 

  23. C.M. Che, C.C. Kwok, S.W. Lai, A.F. Rausch, W.J. Finkenzeller, N. Zhu, and H. Yersin, Chem. Eur. J. 16, 233 (2010).

    Article  CAS  Google Scholar 

  24. X. Yang, C. Yao, and G. Zhou, Platinum Met. Rev. 57, 2 (2013).

    Article  CAS  Google Scholar 

  25. J. Kalinowski, V. Fattori, M. Cocchib, and J.A. Gareth Williams, Coord. Chem. Rev. 255, 2401 (2011).

    Article  CAS  Google Scholar 

  26. Y.L. Tung, P.C. Wu, C.S. Liu, Y. Chi, J.K. Yu, Y.H. Hu, P.T. Chou, S.M. Peng, G.H. Lee, Y. Tao, A.J. Carty, C.F. Shu, and F.I. Wu, Organometallics 23, 3745 (2004).

    Article  CAS  Google Scholar 

  27. T.C. Lee, J.Y. Hung, Y. Chi, Y.M. Cheng, G.H. Lee, P.T. Chou, C.C. Chen, C.H. Chang, and C.C. Wu, Adv. Funct. Mater. 19, 2639 (2009).

    Article  CAS  Google Scholar 

  28. T.-H. Liu and C.H. Chen, J. Appl. Phys. 100, 508 (2006).

    Google Scholar 

  29. S. Kappaun, C. Slugovc, and E.J.W. List, Int. J. Mol. Sci. 9, 1527 (2008).

    Article  CAS  Google Scholar 

  30. F. Dumur, D. Bertin, and D. Gigmes, Int. J. Nanotechnol. 9, 377 (2012).

    Article  CAS  Google Scholar 

  31. T. Hu, L. He, L. Duan, and Y. Qiu, J. Mater. Chem. 22, 4206 (2012).

    Article  CAS  Google Scholar 

  32. R.D. Costa, E. Orti, H.J. Bolink, F. Monti, G. Accorsi, and N. Armaroli, Chem. Int. 51, 8178 (2012).

    Article  CAS  Google Scholar 

  33. F. Dumur, M. Lepeltier, H. Zamani Siboni, D. Gigmes, and H. Aziz, Adv. Opt. Mater. 2, 262 (2014).

    Article  CAS  Google Scholar 

  34. S.W. Lai and C.M. Che, Trans. Met. Rare Earth Comput. 241, 27 (2004).

    CAS  Google Scholar 

  35. C. Adachi, R.C. Kwong, P. Djurovich, V. Adamovich, M.A. Baldo, M.E. Thompson, and S.R. Forrest, Appl. Phys. Lett. 79, 2082 (2001).

    Article  CAS  Google Scholar 

  36. H. Yersin, A.F. Rausch, R. Czerwieniec, T. Hoeck, and T. Fisher, Coord. Chem. Re. 255, 2622 (2011).

    Article  CAS  Google Scholar 

  37. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.E. Lee, C. Adachi, P.E. Burrows, S.R. Forrest, and M.E. Thompson, J. Am. Chem. Soc. 123, 4304 (2001).

    Article  CAS  Google Scholar 

  38. G. Zhou, W.Y. Wong, B. Yao, Z. Xie, and L. Wang, Angew. Chem. Int. Ed. 46, 1149 (2007).

    Article  CAS  Google Scholar 

  39. S. Reineke, T.C. Rosenow, B.L. Ussem, and K. Leo, Adv. Mater. 22, 3189 (2010).

    Article  CAS  Google Scholar 

  40. E. Rossi, A. Colombo, C. Dragonetti, D. Roberto, R. Ugo, A. Valore, L. Falciola, P. Brulatti, M. Cocchi, and J.A.G. Williams, J. Mater. Chem. 22, 10650 (2012).

    Article  CAS  Google Scholar 

  41. K.M.C. Wong, L.L. Hung, W.H. Lam, N. Zhu, and V.W.W. Yam, J. Am. Chem. Soc. 129, 4350 (2007).

    Article  CAS  Google Scholar 

  42. C.H. Yang, M. Mauro, F. Polo, S. Watanabe, I. Muenster, and R. Fröhlich, Chem. Mater. 24, 3684 (2012).

    Article  CAS  Google Scholar 

  43. W.A.E. Omar, J. Adv. Res. 4, 525 (2013).

    Article  Google Scholar 

  44. F. Dumur, L. Beouch, M.-A. Tehfe, E. Contal, M. Lepeltier, G. Wantz, B. Graff, F. Goubard, C.R. Mayer, J. Lalevée, and D. Gigmes, Thin Solid Films 564, 351 (2014).

    Article  CAS  Google Scholar 

  45. C.H. Wallace Choy, W.K. Chan, and Y. Yuan, Adv. Mater. 26, 5368 (2014).

    Article  CAS  Google Scholar 

  46. B.R. Kirthan, M.C. Prabhakara, H.S. Bhojya Naik, P.H. Amith Nayak, and E. Indrajith Naik, Chem. Data Collect. 29, 100506 (2020).

    Article  CAS  Google Scholar 

  47. V. Nishal, D. Singh, R.K. Saini, V. Tanwar, S. Kadyan, R. Srivastava, and P.S. Kadyan, Cogent Chem. 1, 1079291 (2015).

    Article  CAS  Google Scholar 

  48. A. Kumar, A.K. Palai, R. Srivastava, P.S. Kadyan, M.N. Kamalasanan, and I. Singh, J. Organomet. Chem. 756, 38 (2014).

    Article  CAS  Google Scholar 

  49. L. Zhu, H. Tang, Y. Harima, Y. Kunugi, K. Yamashita, J. Ohshita, and A. Kunaib, Thin Solid Films 396, 213 (2001).

    Article  CAS  Google Scholar 

  50. Y.L. Feng, D.M. Zhou, X.L. Zhao, and J.F. Kou, Acta Cryst. C73, 382 (2017).

    Google Scholar 

  51. D.A. Kara, A. Donmez, H. Kara, and M.B. Coban, Acta Cryst. C74, 901 (2018).

    Google Scholar 

  52. G.B. de Bonneval, K.I. Moineau-Chane Ching, F. Alary, T.T. Bui, and L. Valade, Coord. Chem. Rev. 254, 1457 (2010).

    Article  CAS  Google Scholar 

  53. D.A. Kara, A. Donmez, H. Kara, and M.B. Coban, Acta Cryst. C 74, 901–906 (2018).

    Article  CAS  Google Scholar 

  54. A.T. Baker, N.J. Ferguson, H.A. Goodwin, and A.D. Rae, Aust. J. Chem. 42, 623 (1989).

    Article  CAS  Google Scholar 

  55. M.A. Lorena, et al., J Phys. Chem. 115, 9182 (2011).

    Google Scholar 

  56. A.A.A. Emara and A.A.A. Abou-Hussen, Spectrochim. Acta (A). 64, 1010 (2006).

    Article  CAS  Google Scholar 

  57. A.A.A. Emara, A.I. Saleh, and O.I. Adly, Spectrochim Acta (A). 68, 592 (2007).

    Article  CAS  Google Scholar 

  58. A.A.A. Emara, Inorg. Met. Org. Chem. 29, 87 (1999).

    Article  CAS  Google Scholar 

  59. N. Venugopal, G. Krishnamurthy, H.S. Bhojyanaik, and M. Giridhar, J. Mol Str. 1191, 85 (2019).

    Article  CAS  Google Scholar 

  60. K.K. Upadhyay, A. Kumar, S. Upadhyay, and P.C. Mishra, J. Mol. Struct. 873, 5 (2008).

    Article  CAS  Google Scholar 

  61. J. Zhang, X. Zhu, A. Zhong, W. Jia, F. Wu, D. Li, H. Tong, C. Wu, W. Tang, P. Zhang, L. Wang, and D. Han, Org. Electron. 42, 153 (2017).

    Article  CAS  Google Scholar 

  62. K.M. Vyas, R.N. Jadeja, V.K. Gupta, and K.R. Surati, J. Mol. Struct. 990, 110 (2011).

    Article  CAS  Google Scholar 

  63. S.A. Hosseini Yazdi, A. Mirzaahmadi, P. Samadzadeh Aghdam, A.A. Khandar, G. Mahmoudi, W. Scott Kassel, and W.G. Dougherty, Inorga. Chim. Act. 414, 115 (2014).

    Article  CAS  Google Scholar 

  64. C. Kocak, G. Oylumluoglu, A. Donmez, M.B. Coban, U. Erkarslan, M. Aygun, and H. Kara, Acta Cryst. 73, 41 (2017).

    Google Scholar 

  65. R. Shanmugakala, P. Tharmaraj, C.D. Sheela, and C. Anitha, Inter. J. Inorg Chem. 301086 (2012)

  66. A. Majumder, G.M. Rosair, A. Mallic, N. Chattopadhy, and S. Mitra, J. Polyhedron. 25, 1753 (2006).

    Article  CAS  Google Scholar 

  67. G. Oylumluoglu, M.B. Coban, C. Kocak, M. Aygun, and H. Kara, J. Mol. Struct. 1146, 356 (2017).

    Article  CAS  Google Scholar 

  68. E. Gungor, Acta Crystallogr. Sect. C. Struct. Chem. 73, 393 (2017).

    CAS  Google Scholar 

  69. G. Wu, X.F. Wang, T. Okamura, W.Y. Sun, and N. Ueyama, Inorg. Chem. 45, 8523 (2006).

    Article  CAS  Google Scholar 

  70. D. Shoba, S. Periandy, M. Karabacak, and S. Ramalingam, Spectrochim. Acta. Part A 83, 540 (2012).

    Article  CAS  Google Scholar 

  71. K. Fukui, Science 218, 747 (1982).

    Article  CAS  Google Scholar 

  72. D. Shoba, S. Periandy, M. Karabacak, and S. Ramalingam, Spectrochim. Acta A. 83, 540 (2012).

    Article  CAS  Google Scholar 

  73. Z. Asadi, M. Asadi, and M.R. Shorkaei, J Iran Chem Soci. 13, 429 (2016).

    Article  CAS  Google Scholar 

  74. M. SaddamHossain, M. AshrafulIslam, C.M. Zakaria, M.M. Haque, M. AbdulMannan, and M. Kudrat-E-Zahan, J. Chem. Bio. Phy. Sci. Sect. A. 6, 41 (2016).

    Google Scholar 

  75. M.R. Islam, J.A. Shampa, M. Kudrat, E. Zahan, M.M. Haque, and Y. Reza, J. Sci. Res. 8, 181 (2016).

    Article  CAS  Google Scholar 

  76. M. SaddamHossain, C.M. Zakaria, M.M. Haque, and M. Kudrat-E-Zahan, Int. J. Chem. Stud. 4, 11 (2016).

    Google Scholar 

  77. S. Alghool, H.F.A. El-Halim, M.A. El-sadek, I. Yahia, and L. Wahab, J. Therm. Anal. Calorim. 121, 1309 (2015).

    Article  CAS  Google Scholar 

  78. S.S. Chavan and V.A. Sawant, J. Mol. Struct. 965, 1 (2010).

    Article  CAS  Google Scholar 

  79. Ö. Güngör and P. Gürkan, Arabian J. Chem. 12, 2244 (2019).

    Article  CAS  Google Scholar 

  80. H.M. Aly, M.E. Moustafa, M.Y. Nassar, and E.A. Abdelrahman, J. Mol. Struct. 1086, 223 (2015).

    Article  CAS  Google Scholar 

  81. M.A. Neelakantan, S.S. Marriappan, J. Dharmaraja, T. Jeyakumar, and K. Muthukumaran, Acta A Mol. Biomol. Spectrosc. 71, 628 (2008).

    Article  CAS  Google Scholar 

  82. R.S. Joseyphus and M.S. Nair, Arab. J. Chem. 3, 195 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors expresses sincere thanks for the financial support from SC/ST cell, Kuvempu University, Shankaraghatta, Karnataka, India. Authors are also grateful to IISc Bangalore, SAIF IIT Bombay, for providing spectral data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Bhojya Naik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amith Nayak, P.H., Bhojya Naik, H.S., Teja, H.B. et al. Synthesis, Characterization and Luminescent Properties of Mixed-Ligand Nickel Complexes for Opto-Electronic Application. J. Electron. Mater. 50, 2090–2100 (2021). https://doi.org/10.1007/s11664-020-08728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08728-0

Keywords

Navigation