Skip to main content
Log in

Achieving High-Quality ZrB2 Film by Ti-Gettering Assisted DC Sputtering at Ambient Temperature

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZrB2 film plays an important role in microelectronic applications owing to its extremely high-temperature stability, excellent chemical inertness and low resistivity. Unfortunately, its electrical properties are extremely sensitive to microstructure and contaminants such as oxygen in the prepared films. Conventional strategy for the fabrication of low-content oxygen ZrB2 film requires complex ultra-high vacuum (UHV) setups. In analogy to industrial Ti-sublimation pumping, here we conceive a simple method by introducing an assisted Ti cathode sputtering in situ to trap residual gases and contaminants. This method enables high-quality ZrB2 films with low oxygen-content, good crystallinity and minimum resistivity of 265 μΩ cm to be achieved at a modest vacuum level environment without complex UHV devices and intentional substrate heating system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, J. Am. Ceram. Soc. 90, 1347 (2007).

    Article  CAS  Google Scholar 

  2. Y. Meng, F. Ma, Z.X. Song, Y.H. Li, and K.W. Xu, RSC Adv. 6, 844 (2016).

    Article  CAS  Google Scholar 

  3. J. Sung, D.M. Goedde, G.S. Girolami, and J.R. Abelson, J. Appl. Phys. 91, 3904 (2002).

    Article  CAS  Google Scholar 

  4. M.B. Takeyama, A. Noya, Y. Nakadai, S. Kambara, M. Hatanaka, Y. Hayasaka, E. Aoyagi, H. Machida, and K. Masu, Appl. Surf. Sci. 256, 1222 (2009).

    Article  CAS  Google Scholar 

  5. M. Samuelsson, J. Jensen, U. Helmersson, L. Hultman, and H. Högberg, Thin Solid Films 526, 163 (2012).

    Article  CAS  Google Scholar 

  6. L. Tengdelius, M. Samuelsson, J. Jensen, L. Jun, L. Hultman, U. Forsberg, E. Janzén, and H. Högberg, Thin Solid Films 550, 285 (2014).

    Article  CAS  Google Scholar 

  7. L. Tengdelius, G. Greczynski, M. Chubarov, J. Lu, U. Forsberg, L. Hultman, E. Janzén, and H. Högberg, J. Cryst. Growth 430, 55 (2015).

    Article  CAS  Google Scholar 

  8. L. Tengdelius, L. Jun, U. Forsberg, X. Li, L. Hultman, E. Janzén, and H. Högberg, J. Cryst. Growth 453, 71 (2016).

    Article  CAS  Google Scholar 

  9. L. Tengdelius, E. Broitman, L. Jun, F. Eriksson, J. Birch, T. Nyberg, L. Hultman, and H. Högberg, Acta Mater. 111, 166 (2016).

    Article  CAS  Google Scholar 

  10. C. Mitterer, J. Solid State Chem. 133, 279 (1997).

    Article  CAS  Google Scholar 

  11. J. Rezek, J. Vlcek, J. Houska, J. Capek, and P. Baroch, Surf. Coat. Technol. 336, 54 (2018).

    Article  CAS  Google Scholar 

  12. C.-T. Lee, D. Chiang, W.-C. Chen, P.-K. Chiu, and S. Chien-Ying, Jpn. J. Appl. Phys. 53, 095503 (2014).

    Article  Google Scholar 

  13. M. Magnuson, L. Tengdelius, G. Greczynski, L. Hultman, and H. Högberg, Thin Solid Films 649, 89 (2018).

    Article  CAS  Google Scholar 

  14. D.M. Stewart, R.W. Meulenberg, and R.J. Lad, Thin Solid Films 596, 155 (2015).

    Article  CAS  Google Scholar 

  15. D. Lee, G.-D. Sim, K. Xiao, and J.J. Vlassak, J. Phys. Chem. C 118, 21192 (2014).

    Article  CAS  Google Scholar 

  16. R. Khanna, K. Ramani, V. Cracium, R. Singh, S.J. Pearton, F. Ren, and I.I. Kravchenko, Appl. Surf. Sci. 253, 2315 (2006).

    Article  CAS  Google Scholar 

  17. T.N. Oder, P. Martin, A.V. Adedeji, T. Isaacs-Smith, and J.R. Williams, J. Electron. Mater. 36, 805 (2007).

    Article  CAS  Google Scholar 

  18. C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmölz, W.S.M. Werner, and H. Störi, Vacuum 46, 1281 (1995).

    Article  CAS  Google Scholar 

  19. K. Odaka and S. Ueda, Vacuum 44, 713 (1993).

    Article  CAS  Google Scholar 

  20. X. Yang, F. Zhigang-Zak, F. Deqiu, S. Pei, Z. Ying, and Z. Jun, Int. J. Hydrog. Energy 43, 11939 (2018).

    Article  Google Scholar 

  21. R. Singh, M. Trenary, and Y. Paderno, Surf. Sci. Spectra 7, 310 (2000).

    Article  Google Scholar 

  22. S. Otani, T. Aizawa, M. Arai, S. Suehara, and S. Hishita, Phys. Rev. B 71, 5405 (2005).

    Google Scholar 

  23. M. Zhang, X. Ma, J. Yin, Y. Zhang, L. Zhang, Y. Zhou, X. Feng, W. Li, X. Wang, H. Chen, L. Zhang, L. Yin, and L. Deng, Thin Solid Films 709, 138140 (2020).

    Article  CAS  Google Scholar 

  24. Y.M. Liu, C.L. Jiang, Z.L. Pei, H. Lei, J. Gong, and C. Sun, Surf. Coat. Technol. 245, 108 (2014).

    Article  CAS  Google Scholar 

  25. C. Mitterer, H.-M. Ott, J. Komenda-Stallmaier, P. Schmölz, W.S.M. Werner, and H. Störi, J. Alloys Compd. 239, 183 (1996).

    Article  CAS  Google Scholar 

  26. Y.M. Liu, R.Q. Han, F. Liu, Z.L. Pei, and C. Sun, J. Alloys Compd. 703, 188 (2017).

    Article  CAS  Google Scholar 

  27. P. Dhivya, A.K. Prasad, and M. Sridharan, J. Alloys Compd. 620, 109 (2015).

    Article  CAS  Google Scholar 

  28. M. Rahman, C.C. Wang, W. Chen, S.A. Akbar, and C. Mroz, J. Am. Ceram. Soc. 78, 1380 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51862021).

Author information

Authors and Affiliations

Authors

Contributions

ZD: Investigation, formal analysis, writing—original draft; QW: investigation, formal analysis; GT: Conceptualization, methodology, writing-review & editing, project administration, funding acquisition.

Corresponding author

Correspondence to Guangke Tian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Wang, Q. & Tian, G. Achieving High-Quality ZrB2 Film by Ti-Gettering Assisted DC Sputtering at Ambient Temperature. J. Electron. Mater. 50, 2371–2377 (2021). https://doi.org/10.1007/s11664-020-08686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08686-7

Keywords

Navigation