Abstract
High-dielectric-constant (high-k) polymer–ceramic composites with low-level dielectric loss are expected to enable excellent energy storage. However, high conductivity and high dielectric loss often occur simultaneously with high dielectric constant. To obtain a high dielectric constant but with low conductivity and low dielectric loss, in this work, we studied the ternary polyvinylidene fluoride (PVDF)/La2TiO5/V2C dielectric composite system, which takes advantage of the synergistic effect between the high content (0 wt.% to 40 wt.%) of pseudo-perovskite filler La2TiO5 and the low content (2 wt.%) of highly conductive two-dimensional filler V2C. Comparisons with the binary PVDF/La2TiO5 composite system revealed that the ternary PVDF/La2TiO5/V2C composite dielectric system enabled balance and optimization of the comprehensive electrical properties of the composite material. Significantly elevated permittivity as well as depressed low-level dielectric loss were obtained in the ternary composites. The optimized ternary composite with 40 wt.% La2TiO5 and 2 wt.% V2C exhibited high dielectric constant of 47 and low dielectric loss of 0.17 at 1 kHz. This work might enable facile fabrication of promising composite dielectric materials based on this excellent synergetic filler strategy.
This is a preview of subscription content, access via your institution.







References
Y.R. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W.C. Zhang, J.Q. Huang, D.S. Yu, Y.L. Liu, M.M. Titirici, Y.L. Chueh, H.J. Yu, and Q. Zhang, InfoMat 1, 6 (2019).
S. Li, S. Yu, and Y. Feng, High Volt. 1, 122 (2016).
L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, and J. Ma, Prog. Mater. Sci. 55, 840 (2010).
R.M. McMeeking and C.M. Landis, Int. J. Appl. Mech. 72, 581 (2005).
Q. Li, F.Z. Yao, Y. Liu, G. Zhang, H. Wang, and Q. Wang, Annu. Rev. Mater. Res. 48, 219 (2018).
X. Qiu, J. Appl. Phys. 108, 011101 (2010).
Y. Wang, X. Zhou, Q. Chen, B. Chu, and Q. Zhang, IEEE Trans. Dielectr. Electr. Inst. 17, 1306 (2009).
X. Hu, K. Yi, J. Liu, and B. Chu, Energy Technol.-Ger. 6, 849 (2018).
X. Hao, J. Adv. Dielectr. 3, 1330001 (2013).
T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, and R. Ramprasad, Prog. Mater Sci. 83, 236 (2016).
J.C. M’Peko, J. Mater. Sci. Lett. 19, 1925 (2000).
Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.Y.U. Li, E. Iagodkine, A. Haque, L.Q. Chen, T.N. Jackson, and Q. Wang, Nature 523, 576 (2015).
X.Y. Zhao and H.J. Liu, Polym. Int. 59, 597 (2010).
Y. Wang, M. Yao, R. Ma, Q.B. Yuan, D.S. Yang, B. Cui, C. Ma, M. Liu, and D.W. Hu, J. Mater. Chem. A 8, 884 (2020).
H. Stoyanov, D.M. Carthy, M. Kollosche, and G. Kofod, Appl. Phys. Lett. 94, 232905 (2009).
C.H. Park, M.H.T. Kaneko, and M. Akazaki, IEEE Trans. Dielectr. Electr. Inst. 17, 234 (1982).
S. Tu, Q. Jiang, J. Zhang, X. He, M.N. Hedhili, X.X. Zhang, and H.N. Alshareef, ACS Appl. Mater. Interfaces 11, 27358 (2019).
G. Armand, J. Lapujoulade, and J. Paigne, Appl. Phys. Ser. 14, 53 (1963).
C. Wu, X. Huang, X. Wu, J. Yu, L. Xie, and P. Jiang, Compos. Sci. Technol. 72, 521 (2012).
K. Chen, C. Xiang, L. Li, H. Qian, Q. Xiao, and F. Xu, J. Mater. Chem. 22, 6449 (2012).
B. Luo, X. Wang, Y. Wang, and L. Li, J. Mater. Chem. A 2, 510 (2014).
M.E. Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi, and A. Qaiss, Appl. Surf. Sci. 258, 7668 (2012).
D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, and T.T. Sun, J. Am. Ceram. Soc. 96, 184 (2013).
K. Kawashima, M. Hojamberdiev, H. Wagata, K. Yubuta, S. Oishi, and K. Teshima, Cryst. Growth Des. 15, 333 (2014).
Z. Chen, X. Yang, X. Qiao, N. Zhang, C.F. Zhang, Z.L. Ma, and H.Q. Wang, J. Phys. Chem. Lett. 11, 885 (2020).
X. Zhang, Z. Zhang, and Z. Zhou, J. Energy Chem. 27, 73 (2018).
M. Malaki, A. Maleki, and R.S. Varma, J. Mater. Chem. A 7, 10843 (2019).
H. Tsuii and Y. Ikada, J. Appl. Polym. Sci. 60, 2367 (1996).
Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren, and Z. Zhu, ACS Appl. Mater. Interfaces 11, 44282 (2019).
G.S. Harbison, JACS Commun. 33, 124 (2001).
O.S. Andersen, Biophys. J. 41, 135 (1983).
J. Hu, B. Xu, C. Ouyang, Y. Zhang, and S.A. Yang, RSC Adv. 6, 27467 (2016).
B. Kumar, S.J. Rodrigues, and R.J. Spry, Electrochim. Acta 47, 1275 (2002).
X. Zhang, Y. Ma, C. Zhao, and W. Yang, Appl. Surf. Sci. 305, 531 (2014).
D.K. Hwang, M.S. Oh, J.M. Hwang, J.H. Kim, and S. Im, Appl. Phys. Lett. 92, 013304 (2008).
Z.M. Dang, H.P. Xu, and H.Y. Wang, Appl. Phys. Lett. 90, 012901 (2007).
Y. Feng, B. Miao, H. Gong, Y. Xie, X. Wei, and Z. Zhang, ACS Appl. Mater. Interfaces 8, 19054 (2016).
J.V. Seidel, O.A. Castaneda-Uribe, S. Arevalo, F. Munoz, W. Proud, and A. Avila, J. Hazard. Mater. 368, 228 (2019).
B. Wu, K. Fu, N. Yantara, G.C. Xing, S.Y. Sun, T.C. Sum, and N. Mathews, Adv. Energy Mater. 5, 1500829 (2015).
Y.R. Rhim, D. Zhang, D.H. Fairbrother, K.A. Wepasnick, K.J. Livi, R.J. Bodnar, and D.C. Nagle, Carbon 48, 1012 (2010).
Z. Xu, X. Lv, J. Chen, L. Jiang, Y. Lai, and J. Li, Phys. Chem. Chem. Phys. 19, 7807 (2017).
H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, and Y. Jiang, Appl. Phys. Lett. 93, 202904 (2008).
V. Vogel and D. Mobius, J. Colloids Interf. Sci. 126, 408 (1988).
F. Patten and W. Gordy, PNAS 46, 1137 (1960).
Acknowledgements
This work was supported by the General Project of Natural Science Foundation of Chongqing Science and Technology Bureau (Grant No. cstc2020jcyj-msxm0673), Science and Technology Research Program of Chongqing Municipal Education Commission (Grant Nos. KJQN201901417 and KJQN201801409), and Support Programme for Growth of Young Scientific Research Talents of Yangtze Normal University (Grant No. 0107/010721064).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Feng, Y., Zhao, X., Chen, P. et al. Remarkably Elevated Permittivity Achieved in PVDF/1D La2TiO5 Composite Film Materials with Low-Level Dielectric Loss by Adding 2D V2C MXene Phase. J. Electron. Mater. 50, 2182–2189 (2021). https://doi.org/10.1007/s11664-020-08684-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-020-08684-9
Keywords
- Dielectric
- composite
- La2TiO5
- V2C
- synergy