Skip to main content

Remarkably Elevated Permittivity Achieved in PVDF/1D La2TiO5 Composite Film Materials with Low-Level Dielectric Loss by Adding 2D V2C MXene Phase

Abstract

High-dielectric-constant (high-k) polymer–ceramic composites with low-level dielectric loss are expected to enable excellent energy storage. However, high conductivity and high dielectric loss often occur simultaneously with high dielectric constant. To obtain a high dielectric constant but with low conductivity and low dielectric loss, in this work, we studied the ternary polyvinylidene fluoride (PVDF)/La2TiO5/V2C dielectric composite system, which takes advantage of the synergistic effect between the high content (0 wt.% to 40 wt.%) of pseudo-perovskite filler La2TiO5 and the low content (2 wt.%) of highly conductive two-dimensional filler V2C. Comparisons with the binary PVDF/La2TiO5 composite system revealed that the ternary PVDF/La2TiO5/V2C composite dielectric system enabled balance and optimization of the comprehensive electrical properties of the composite material. Significantly elevated permittivity as well as depressed low-level dielectric loss were obtained in the ternary composites. The optimized ternary composite with 40 wt.% La2TiO5 and 2 wt.% V2C exhibited high dielectric constant of 47 and low dielectric loss of 0.17 at 1 kHz. This work might enable facile fabrication of promising composite dielectric materials based on this excellent synergetic filler strategy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Y.R. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W.C. Zhang, J.Q. Huang, D.S. Yu, Y.L. Liu, M.M. Titirici, Y.L. Chueh, H.J. Yu, and Q. Zhang, InfoMat 1, 6 (2019).

    Article  CAS  Google Scholar 

  2. S. Li, S. Yu, and Y. Feng, High Volt. 1, 122 (2016).

    Article  Google Scholar 

  3. L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, and J. Ma, Prog. Mater. Sci. 55, 840 (2010).

    Article  CAS  Google Scholar 

  4. R.M. McMeeking and C.M. Landis, Int. J. Appl. Mech. 72, 581 (2005).

    Article  Google Scholar 

  5. Q. Li, F.Z. Yao, Y. Liu, G. Zhang, H. Wang, and Q. Wang, Annu. Rev. Mater. Res. 48, 219 (2018).

    Article  CAS  Google Scholar 

  6. X. Qiu, J. Appl. Phys. 108, 011101 (2010).

    Article  CAS  Google Scholar 

  7. Y. Wang, X. Zhou, Q. Chen, B. Chu, and Q. Zhang, IEEE Trans. Dielectr. Electr. Inst. 17, 1306 (2009).

    Google Scholar 

  8. X. Hu, K. Yi, J. Liu, and B. Chu, Energy Technol.-Ger. 6, 849 (2018).

    Article  CAS  Google Scholar 

  9. X. Hao, J. Adv. Dielectr. 3, 1330001 (2013).

    Article  CAS  Google Scholar 

  10. T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, and R. Ramprasad, Prog. Mater Sci. 83, 236 (2016).

    Article  CAS  Google Scholar 

  11. J.C. M’Peko, J. Mater. Sci. Lett. 19, 1925 (2000).

    Article  Google Scholar 

  12. Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.Y.U. Li, E. Iagodkine, A. Haque, L.Q. Chen, T.N. Jackson, and Q. Wang, Nature 523, 576 (2015).

    Article  CAS  Google Scholar 

  13. X.Y. Zhao and H.J. Liu, Polym. Int. 59, 597 (2010).

    CAS  Google Scholar 

  14. Y. Wang, M. Yao, R. Ma, Q.B. Yuan, D.S. Yang, B. Cui, C. Ma, M. Liu, and D.W. Hu, J. Mater. Chem. A 8, 884 (2020).

    Article  CAS  Google Scholar 

  15. H. Stoyanov, D.M. Carthy, M. Kollosche, and G. Kofod, Appl. Phys. Lett. 94, 232905 (2009).

    Article  CAS  Google Scholar 

  16. C.H. Park, M.H.T. Kaneko, and M. Akazaki, IEEE Trans. Dielectr. Electr. Inst. 17, 234 (1982).

    Article  Google Scholar 

  17. S. Tu, Q. Jiang, J. Zhang, X. He, M.N. Hedhili, X.X. Zhang, and H.N. Alshareef, ACS Appl. Mater. Interfaces 11, 27358 (2019).

    Article  CAS  Google Scholar 

  18. G. Armand, J. Lapujoulade, and J. Paigne, Appl. Phys. Ser. 14, 53 (1963).

    Google Scholar 

  19. C. Wu, X. Huang, X. Wu, J. Yu, L. Xie, and P. Jiang, Compos. Sci. Technol. 72, 521 (2012).

    Article  CAS  Google Scholar 

  20. K. Chen, C. Xiang, L. Li, H. Qian, Q. Xiao, and F. Xu, J. Mater. Chem. 22, 6449 (2012).

    Article  CAS  Google Scholar 

  21. B. Luo, X. Wang, Y. Wang, and L. Li, J. Mater. Chem. A 2, 510 (2014).

    Article  CAS  Google Scholar 

  22. M.E. Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi, and A. Qaiss, Appl. Surf. Sci. 258, 7668 (2012).

    Article  CAS  Google Scholar 

  23. D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, and T.T. Sun, J. Am. Ceram. Soc. 96, 184 (2013).

    Article  CAS  Google Scholar 

  24. K. Kawashima, M. Hojamberdiev, H. Wagata, K. Yubuta, S. Oishi, and K. Teshima, Cryst. Growth Des. 15, 333 (2014).

    Article  CAS  Google Scholar 

  25. Z. Chen, X. Yang, X. Qiao, N. Zhang, C.F. Zhang, Z.L. Ma, and H.Q. Wang, J. Phys. Chem. Lett. 11, 885 (2020).

    Article  CAS  Google Scholar 

  26. X. Zhang, Z. Zhang, and Z. Zhou, J. Energy Chem. 27, 73 (2018).

    Article  Google Scholar 

  27. M. Malaki, A. Maleki, and R.S. Varma, J. Mater. Chem. A 7, 10843 (2019).

    Article  CAS  Google Scholar 

  28. H. Tsuii and Y. Ikada, J. Appl. Polym. Sci. 60, 2367 (1996).

    Article  Google Scholar 

  29. Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren, and Z. Zhu, ACS Appl. Mater. Interfaces 11, 44282 (2019).

    Article  CAS  Google Scholar 

  30. G.S. Harbison, JACS Commun. 33, 124 (2001).

    Google Scholar 

  31. O.S. Andersen, Biophys. J. 41, 135 (1983).

    Article  CAS  Google Scholar 

  32. J. Hu, B. Xu, C. Ouyang, Y. Zhang, and S.A. Yang, RSC Adv. 6, 27467 (2016).

    Article  CAS  Google Scholar 

  33. B. Kumar, S.J. Rodrigues, and R.J. Spry, Electrochim. Acta 47, 1275 (2002).

    Article  CAS  Google Scholar 

  34. X. Zhang, Y. Ma, C. Zhao, and W. Yang, Appl. Surf. Sci. 305, 531 (2014).

    Article  CAS  Google Scholar 

  35. D.K. Hwang, M.S. Oh, J.M. Hwang, J.H. Kim, and S. Im, Appl. Phys. Lett. 92, 013304 (2008).

    Article  CAS  Google Scholar 

  36. Z.M. Dang, H.P. Xu, and H.Y. Wang, Appl. Phys. Lett. 90, 012901 (2007).

    Article  CAS  Google Scholar 

  37. Y. Feng, B. Miao, H. Gong, Y. Xie, X. Wei, and Z. Zhang, ACS Appl. Mater. Interfaces 8, 19054 (2016).

    Article  CAS  Google Scholar 

  38. J.V. Seidel, O.A. Castaneda-Uribe, S. Arevalo, F. Munoz, W. Proud, and A. Avila, J. Hazard. Mater. 368, 228 (2019).

    Article  CAS  Google Scholar 

  39. B. Wu, K. Fu, N. Yantara, G.C. Xing, S.Y. Sun, T.C. Sum, and N. Mathews, Adv. Energy Mater. 5, 1500829 (2015).

    Article  CAS  Google Scholar 

  40. Y.R. Rhim, D. Zhang, D.H. Fairbrother, K.A. Wepasnick, K.J. Livi, R.J. Bodnar, and D.C. Nagle, Carbon 48, 1012 (2010).

    Article  CAS  Google Scholar 

  41. Z. Xu, X. Lv, J. Chen, L. Jiang, Y. Lai, and J. Li, Phys. Chem. Chem. Phys. 19, 7807 (2017).

    Article  CAS  Google Scholar 

  42. H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, and Y. Jiang, Appl. Phys. Lett. 93, 202904 (2008).

    Article  CAS  Google Scholar 

  43. V. Vogel and D. Mobius, J. Colloids Interf. Sci. 126, 408 (1988).

    Article  CAS  Google Scholar 

  44. F. Patten and W. Gordy, PNAS 46, 1137 (1960).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Project of Natural Science Foundation of Chongqing Science and Technology Bureau (Grant No. cstc2020jcyj-msxm0673), Science and Technology Research Program of Chongqing Municipal Education Commission (Grant Nos. KJQN201901417 and KJQN201801409), and Support Programme for Growth of Young Scientific Research Talents of Yangtze Normal University (Grant No. 0107/010721064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yefeng Feng or Qihuang Deng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 263 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhao, X., Chen, P. et al. Remarkably Elevated Permittivity Achieved in PVDF/1D La2TiO5 Composite Film Materials with Low-Level Dielectric Loss by Adding 2D V2C MXene Phase. J. Electron. Mater. 50, 2182–2189 (2021). https://doi.org/10.1007/s11664-020-08684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08684-9

Keywords

  • Dielectric
  • composite
  • La2TiO5
  • V2C
  • synergy