An Ultrathin Compact Polarization-Sensitive Triple-band Microwave Metamaterial Absorber


In this study, an ultra-compact metamaterial absorber (MMA) has been proposed for microwave applications comprising two modified square-shaped resonators printed on a dielectric substrate and terminated by a metallic plane. The proposed MMA exhibits perfect absorption at 3.36 GHz, 3.95 GHz and 10.48 GHz, covering S- and X-band applications. The absorber is ultra-compact (0.112 λ) in size and ultra-thin (0.018 λ) in thickness at the lowest resonating frequency. The normalized impedance, constitutive electromagnetic parameters, electric field and surface current distribution have been studied to understand the physical mechanism of the triple-band absorption. Furthermore, the absorber is analyzed with different polarization and incident angles for transverse electric waves. The proposed MMA has been experimentally demonstrated to verify the results obtained from simulations. Moreover, the effect of over-layer thickness is investigated to examine the sensing application of the absorber.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968).

    Article  Google Scholar 

  2. 2.

    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    T.S. Bui, T.D. Dao, L.H. Dang, L.D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, and C.V. Hoang, Sci. Rep. 6, 32123 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, and J. Pendry, Phys. Rev. E 74, 036621 (2006).

    Article  Google Scholar 

  5. 5.

    P. Jain, A. Thourwal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, in Prog. Electromagn. Res. Symp. - Spring (2017), pp. 2800-2803.

  6. 6.

    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    P. Jain, S. Bansal, K. Prakash, N. Sardana, N. Gupta, S. Kumar, and A.K. Singh, J. Mater. Sci.: Mater. Electron. 31, 11878 (2020).

    Google Scholar 

  8. 8.

    P. Jain, S. Garg, S. Bansal, K. Prakash, N. Gupta, A. K. Singh, N. Sharma, S. Kumar, N. Sardana and A. K. Singh, in IEEE 13th Nanotechnol. Mater. Devices Conf. (NMDC) (2019), pp. 1-4.

  9. 9.

    F.S. Jafari, M. Naderi, A. Hatami, and F.B. Zarrabi, AEU-Int. J. Electron. C. 101, 138 (2019).

    Article  Google Scholar 

  10. 10.

    Y. Cheng, Y. Nie, and R. Gong, Opt. Laser Technol. 48, 415 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    J. Tak, Y. Jin, and J. Choi, Microw. Opt. Technol. Lett. 58, 2052 (2016).

    Article  Google Scholar 

  12. 12.

    M. Yoo, H.K. Kim, and S. Lim, IEEE Antennas Wirel. Propag. Lett. 15, 414 (2016).

    Article  Google Scholar 

  13. 13.

    P.V. Tuong, J.W. Park, J.Y. Rhee, K.W. Kim, W.H. Jang, H. Cheong, and Y.P. Lee, Appl. Phys. Lett. 102, 081122 (2013).

    Article  Google Scholar 

  14. 14.

    D. Singh and V.M. Srivastava, AEU - Int. J. Electron. Commun. 83, 58 (2018).

    Article  Google Scholar 

  15. 15.

    A.S. Dhillon, Microw. Opt. Technol. Lett. 61, 89 (2019).

    Article  Google Scholar 

  16. 16.

    C.M. Tran, H. Van Pham, H.T. Nguyen, T.T. Nguyen, L.D. Vu, and T.H. Do, Plasmonics 14, 1587 (2019).

    Article  Google Scholar 

  17. 17.

    Y.J.M. Kim, Y.J. Yoo, P. Van Tuong, H. Zheng, J.Y. Rhee, and Y. Lee, J. Opt. Soc. Am. B 31, 2744 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    P. Jain, A. Singh, J. Pandey, S. Garg, S. Bansal, M. Agarwal, S. Kumar, N. Sardana, N. Gupta, A. Singh, and I.E.T. Microw, Antennas Propag. 14, 390 (2020).

    Google Scholar 

  19. 19.

    K. Kumari, N. Mishra, and R.K. Chaudhary, Microw. Opt. Technol. Lett. 59, 2664 (2017).

    Article  Google Scholar 

  20. 20.

    K.P. Kaur, T. Upadhyaya, M. Palandoken, and C. Gocen, Int. J. RF Microw. Comput. Eng. 29, e21646 (2019).

    Article  Google Scholar 

  21. 21.

    K.P. Kaur, T. Upadhyaya, and I.E.T. Microw, Antennas Propag. 12, 1428 (2018).

    Google Scholar 

  22. 22.

    S. Ji, C. Jiang, J. Zhao, X. Zhang, and Q. He, Opt. Commun. 432, 65 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    F. Costa, A. Monorchio, and G. Manara, Appl. Comput. Electromagn. Soc. J. 29, 960 (2014).

    Google Scholar 

  24. 24.

    M. Layegh, F.E. Ghodsi, and H. Hadipour, Appl. Phys. A 126, 14 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    R. Asgharian, B. Zakeri, and O. Karimi, AEU - Int. J. Electron. Commun. 87, 119 (2018).

    Article  Google Scholar 

  26. 26.

    S.R. Thummaluru, N. Mishra, and R.K. Chaudhary, AEU - Int. J. Electron. Commun. 82, 508 (2017).

    Article  Google Scholar 

  27. 27.

    C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and E. Demirel, Opt. Commun. 322, 137 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    C. Sabah, J. Mater. Sci.: Mater. Electron. 27, 4777 (2016).

    CAS  Google Scholar 

Download references


PJ acknowledges financial support from the Ministry of Electronics and IT, Government of India, under the Visvesvaraya PhD. Scheme for Electronics and IT.

Author information



Corresponding author

Correspondence to Arun K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Singh, A.K., Pandey, J.K. et al. An Ultrathin Compact Polarization-Sensitive Triple-band Microwave Metamaterial Absorber. Journal of Elec Materi 50, 1506–1513 (2021).

Download citation


  • Metamaterial absorber
  • ultrathin
  • triple-band
  • polarization sensitive
  • sensor
  • normalized impedance