Skip to main content
Log in

Improving the Electrical Parameters of Se80Te20 Films by the Sn Substitution for Te and Thermal-Induced Effect

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Films of Se80Te20−xSnx (where  x = 6 at.%, 12 at.%, and 15 at.%) were prepared by thermal evaporation in a certain thickness of ~ 450 nm. Both the structural and electrical properties of as-prepared and annealed Se80Te20−xSnx films were studied. The annealing process was performed at 373 K, 393 K, and 413 K to cover the amorphous-crystalline region. Structural analyses show an improvement of film crystallinity with increasing both Sn content and annealing temperature. On the other hand, the electrical conductivity also shows significant enhancement with increasing Sn content and annealing temperature. The electrical results reveal that, at low temperature, conduction takes place through variable range hopping in localized states close to the Fermi level. Consequently, it has been shown in high temperature was explained by thermal charge carrier activation tunneling in the band tails of localized states. More structural and electrical parameters were evaluated for the Se80Te20−xSnx films to increase the understanding of the electronic properties of the Se-Te-Sn system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Rashad, A.A.A. Darwish, and A.A. Attia, J. Non-Cryst. Solids 470, 1 (2017).

    Article  CAS  Google Scholar 

  2. S.O. Kasap, Photoreceptors: the chalcogenides. Handbook of Imaging Materials (1991): 329-368.

  3. J.D. Joannopoulos, M. Schlüter, and M.L. Cohen, Phys. Rev. B 11, 2186 (1975).

    Article  CAS  Google Scholar 

  4. R. Wu, Q. Tao, W. Dang, Y. Liu, B. Li, J. Li, B. Zhao, Z. Zhang, H. Ma, G. Sun, and X. Duan, Adv. Funct. Mater. 29, 1806611 (2019).

    Article  CAS  Google Scholar 

  5. J. Bartak, S. Martinkova, and J. Malek, Cryst. Growth Des. 15, 4287 (2015).

    Article  CAS  Google Scholar 

  6. R. Svoboda and J. Málek, J. Chem. Phys. 141, 224507 (2014).

    Article  CAS  Google Scholar 

  7. N. Afify, J. Non-Cryst. Solids 128, 279 (1991).

    Article  CAS  Google Scholar 

  8. S. Hasegawa and M. Kitagawa, Solid State Commun. 27, 855 (1978).

    Article  CAS  Google Scholar 

  9. A.S. Soltan, M.A. El-Oyoun, A.A. Abu-Sehly, and A.Y. Abdel-Latief, Mater. Chem. Phys. 82, 101 (2003).

    Article  CAS  Google Scholar 

  10. V. Sharma, J. Ovonic Res. 2, 35 (2006).

    CAS  Google Scholar 

  11. N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, J. Appl. Phys. 51, 1048 (1980).

    Article  CAS  Google Scholar 

  12. M.A. Abdel-Rahim, A. Gaber, A.A. Abu-Sehly, and N.M. Abdelazim, Thermochim. Acta 566, 274 (2013).

    Article  CAS  Google Scholar 

  13. A. Bhargava and J. Kalla, Int. J. Mater. Sci. Eng. 4, 126 (2016).

    Google Scholar 

  14. F. Abdel-Wahab, Phys. B Condens. Matter 406, 1053 (2011).

    Article  CAS  Google Scholar 

  15. O.A. Lafi and M.M.A. Imran, J. Alloys Compd. 509, 5090 (2011).

    Article  CAS  Google Scholar 

  16. P. Heera, A. Kumar, and R. Sharma, J. Therm. Anal. Calorim. 130, 661 (2017).

    Article  CAS  Google Scholar 

  17. R. Kumar, P. Sharma, P.B. Barman, V. Sharma, S.C. Katyal, and V.S. Rangra, J. Therm. Anal. Calorim. 110, 1053 (2012).

    Article  CAS  Google Scholar 

  18. N.M. Abdelazim, M.A. Dabban, M.A. Abdel-Rahim, and A.A. Abu-Sehly, Mater. Sci. Semicond. Process. 39, 156 (2015).

    Article  CAS  Google Scholar 

  19. M.A. Abdel-Rahim, A.Y. Abdel-Latief, M. Rashad, and N.M. Abdelazim, Mater. Sci. Semicond. Process. 20, 27 (2014).

    Article  CAS  Google Scholar 

  20. Ö. Sürücü, Avrupa Bilim ve Teknoloji Dergisi 14, 343 (2018).

    Google Scholar 

  21. M.A. Dabban, N.M. Abdelazim, A.M. Abd-Elnaiem, S. Mustafa, and M.A. Abdel-Rahim, Mater. Res. Innov. 22, 324 (2018).

    CAS  Google Scholar 

  22. S. Kumar, G.B.V.S. Laxmi, M. Husain, and M. Zulfequar, EPJ Appl. Phys. 35, 155 (2006).

    Article  CAS  Google Scholar 

  23. V.K. Saraswat, V. Kishore, K.S. Deepika, N.S. Saxena, and T.P. Sharma, Chalcogenide Lett. 4, 61 (2007).

    CAS  Google Scholar 

  24. A. Sethi, S. Sharma, A. Sarin, R. Kumar, and N. Sharma, Appl. Phys. A 124, 830 (2018).

    Article  CAS  Google Scholar 

  25. S. Mishra, P.K. Singh, P. Lohia, and D.K. Dwivedi, Glass Phys. Chem. 46, 341 (2020).

    Article  Google Scholar 

  26. D. Solanki, V. Kishore, P.K. Saraswat, A.D. Mittal, S. Gangwar, and V.K. Saraswat, Chalcogenide Lett. 7, 263 (2010).

    CAS  Google Scholar 

  27. O.A. Lafi, J. Alloys Compd. 660, 503 (2016).

    Article  CAS  Google Scholar 

  28. A. Sharma, N. Mehta, and A. Kumar, J. Mater. Sci. 46, 4509 (2011).

    Article  CAS  Google Scholar 

  29. M. Rashad, R. Amin, and M.M. Hafiz, Chalcogenide Lett. 12, 441 (2015).

    CAS  Google Scholar 

  30. M. Rashad, R. Amin, and M.M. Hafiz, Can. J. Phys. 93, 1 (2015).

    Article  CAS  Google Scholar 

  31. P.K. Singh, S. Rai, P. Lohia, and D.K. Dwivedi, Sens. Lett. 17, 1 (2019).

    Article  CAS  Google Scholar 

  32. M. Rashad, A.A.A. Darwish, S.A.F. Al-Said, A.A. Hendi, and M.M. Hafiz, Chinese J. Phys. 56, 212 (2018).

    Article  CAS  Google Scholar 

  33. M.A. Abdel-Rahim, A. Gaber, A.A. Abu-Sehly, and N.M. Abdelazim, J. Non-Cryst. Solids 376, 158 (2013).

    Article  CAS  Google Scholar 

  34. J.A. Langford and A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978).

    Article  CAS  Google Scholar 

  35. U. Holzwarth and N. Gibson, Nat. Nanotechnol. 6, 534 (2011).

    Article  CAS  Google Scholar 

  36. R.W. Cheary and A. Coelho, J. Appl. Crystallogr. 25, 109 (1992).

    Article  CAS  Google Scholar 

  37. F.T.L. Muniz, M.A.R. Miranda, C.M.D. Santos, and J.M. Sasaki, Acta Crystallogr. A 72, 385 (2016).

    Article  CAS  Google Scholar 

  38. A.M. Abd-Elnaiem, M.A. Abdel-Rahim, and S. Moustafa, J. Non-Cryst. Solids 540, 120062 (2020).

    Article  CAS  Google Scholar 

  39. N.F. Mott, Philos. Mag. 22, 7 (1970).

    Article  CAS  Google Scholar 

  40. E.A. Davis and N.F. Mott, Philos. Mag. 22, 903 (1970).

    Article  CAS  Google Scholar 

  41. M.A.M. Khan, M. Zulfequar, and M. Husain, Phys. B Condens. Matter 322, 1 (1970).

    Article  Google Scholar 

  42. S.L. Sharma and D.R. Sharma, Semicond. Sci. Technol. 8, 344 (1993).

    Article  CAS  Google Scholar 

  43. M. Dominguez, E. Marquez, P. Villares, and R. Jiménez-Garay, Mater. Lett. 19, 69 (1994).

    Article  CAS  Google Scholar 

  44. S. Mahadevan, A. Giridhar, and K.J. Rao, J. Phys. C Solid State Phys. 10, 4499 (1977).

    Article  CAS  Google Scholar 

  45. S. Chaudhuri, S.K. Biswas, A. Choudhury, and K. Goswami, J. Non-Cryst. Solids 54, 179 (1983).

    Article  CAS  Google Scholar 

  46. C. Kittel, P. McEuen, and P. McEuen, Introduction to Solid State Physics, Vol. 8. Wiley, New York, 1996

    Google Scholar 

  47. K.N. Tu and R. Rosenberg, Analytical Techniques for Thin Films: Treatise on Materials Science and Technology, Vol. 27. Elsevier, Amsterdam 2017.

  48. S.H. Wemple, and M. DiDomenico Jr., Phys. Rev. B 3, 1338 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rashad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashad, M., Amin, R., Al-Ghamdi, S.A. et al. Improving the Electrical Parameters of Se80Te20 Films by the Sn Substitution for Te and Thermal-Induced Effect. J. Electron. Mater. 50, 2075–2082 (2021). https://doi.org/10.1007/s11664-020-08674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08674-x

Keywords

Navigation