Skip to main content
Log in

Electrical and Magnetic Properties for Bulk FeSe and FeSe0.5Te0.5 Superconductors

  • Brief Communication
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report a one-step low temperature sintering method for preparing high quality FeSe and FeSe0.5Te0.5polycrystalline superconductors, and investigate their transport and magnetic properties. The low temperature resistance results show that onset temperatures of the superconducting transition for FeSe and FeSe0.5Te0.5 are 11.06 K and 14.72 K, respectively. X-ray diffraction results demonstrate that Te alloying causes expansion of lattice parameters, and density functional theory calculations confirm that Te-5p orbital electrons are related to the enhancement of the temperature of the superconducting transition. Magnetic measurements reveal that the superconducting diamagnetic transition appears at 9.35 K and 14.16 K for FeSe and FeSe0.5Te0.5, respectively, in keeping with the initial transition temperature of zero resistivity. In addition, high temperature transport results show that there is a sign crossover in the thermopower for FeSe and FeSe0.5Te0.5, which is due to the dominant contributions from electrons and holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, and M.K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).

    Article  CAS  Google Scholar 

  2. Q.S. Ma, F. Lan, X.H. Li, Z.F. Du, H.J. Li, and Z.Q. Ma, Scripta Mater. 176, 88 (2020).

    Article  CAS  Google Scholar 

  3. S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506 (2009).

    Article  Google Scholar 

  4. S. Medvedev, T.M. McQueen, I.A. Troyan, T. Palasyuk, M.I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009).

    Article  CAS  Google Scholar 

  5. Z.N. Guo, F. Sun, Y.Y. Chen, Y.L. Mao, L. Wan, X.X. Yan, Y. Yang, and W.X. Yuan, CrystEngComm 21, 2994 (2019).

    Article  CAS  Google Scholar 

  6. M.H. Fang, H.M. Pham, B. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, and Z.Q. Mao, Phys. Rev. B 78, 224503 (2008).

    Article  Google Scholar 

  7. P.K. Maheshwari, R. Jha, B. Gahtori, and V.P.S. Awana, J. Supercond. Nov. Magn. 28, 2893 (2015).

    Article  CAS  Google Scholar 

  8. D. Fobes, I.A. Zaliznyak, Z. Xu, R. Zhong, G. Gu, J.M. Tranquada, L. Harriger, D. Singh, V.O. Garlea, M. Lumsden, and B. Winn, Phys. Rev. Lett. 112, 187202 (2014).

    Article  Google Scholar 

  9. L. Craco, B.J. Xu, M.H. Fang, and B. Freelon, Phys. Rev. B 101, 165107 (2020).

    Article  CAS  Google Scholar 

  10. J. Hu, T.J. Liu, B. Qian, and Z.Q. Mao, Phys. Rev. B 88, 094505 (2013).

    Article  Google Scholar 

  11. Q.S. Ma, F. Lan, W.B. Qiu, X.H. Li, Z.Q. Ma, H.J. Li, and Y.C. Liu, J. Mater. Chem. C 7, 10019 (2019).

    Article  CAS  Google Scholar 

  12. A. Okazaki and K. Hirakawa, J. Phys. Soc. Jpn. 11, 930 (1956).

    Article  CAS  Google Scholar 

  13. C.S. Li, S.N. Zhang, Z.M. Yu, X.B. Ma, J.X. Liu, and P.X. Zhang, J. Supercond. Nov. Magn. 28, 1449 (2015).

    Article  CAS  Google Scholar 

  14. H.W. Ming, C. Zhu, X.Y. Qin, J. Zhang, D. Li, B.L. Zhang, T. Chen, J.M. Li, X.N. Lou, and H.X. Xin, A.C.S. Appl. Mater. Interfaces 12, 19693 (2020).

    Article  CAS  Google Scholar 

  15. S.B. Zhang, X.D. Zhu, H.C. Lei, G. Li, B.S. Wang, L.J. Li, X.B. Zhu, Z.R. Yang, W.H. Song, J.M. Dai, and Y.P. Sun, Supercond. Sci. Technol. 22, 075016 (2009).

    Article  Google Scholar 

  16. M.A. Hafiez, Y.Y. Zhang, Z.Y. Cao, C.G.G. Karapetrov, V.M. Pudalov, V.A. Vlasenko, A.V. Sadakov, D.A. Knyazev, T.A. Romanova, D.A. Chareev, O.S. Volkova, A.N. Vasiliev, and X.J. Chen, Phys. Rev. B 91, 165109 (2015).

    Article  Google Scholar 

  17. D. Li and X.Y. Qin, J. Appl. Phys. 100, 023713 (2006).

    Article  Google Scholar 

  18. A. Subedi, L.J. Zhang, D.J. Singh, and M.H. Du, Phys. Rev. B 78, 134514 (2008).

    Article  Google Scholar 

  19. A.E. Böhmer and A. Kreisel, J. Phys.: Condens. Matter 30, 023001 (2018).

    Google Scholar 

Download references

Acknowledgments

This work is supported by the funding support from National Key Research and Development Program of China, Grant No. 2018YFA0704303.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Li, J. Zhang or H. J. Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhang, B.L., Ming, H.W. et al. Electrical and Magnetic Properties for Bulk FeSe and FeSe0.5Te0.5 Superconductors. J. Electron. Mater. 50, 941–946 (2021). https://doi.org/10.1007/s11664-020-08666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08666-x

Keywords

Navigation