Skip to main content
Log in

Structural and Optical Studies on Strontium-Filled CoSb3 Nanoparticles Via a Solvo-/Hydrothermal Method

  • Asian Consortium ACCMS–International Conference ICMG 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, strontium-filled CoSb3 nanoparticles (SryCoSb3, y = 0, 0.025, 0.05, 0.075 and 0.1) were synthesized by a solvo-/hydrothermal method. Powder x-ray diffraction (pXRD) analysis reveals a cubic phase of CoSb3 with space group Im \( \bar{3} \). The Sr-filled samples show a slight peak shift and broadening of the high-intensity peak at 31.2491° corresponding to the (013) plane which can be attributed to the interaction of Sr atoms filled into voids of the CoSb3 cage-like structure with some of the lattice vibrations in the structure. Field emission scanning electron microscopy (FESEM) images show as-synthesized nanoparticles in the range of 50–160 nm, and energy-dispersive x-ray spectroscopy (EDX) analysis reveals the chemical composition of Sr-filled CoSb3. Fourier transform infrared spectroscopy (FTIR) studies confirm vibrational modes below 1000 cm−1 corresponding to Co-Sb and cobalt complexes in both filled and unfilled CoSb3 nanoparticles. UV–Vis absorption analysis indicates a peak shift towards the longer-wavelength region (redshift) and a decrease in the optical band gap as a function of the increase in Sr filling concentration. This can be considered strong evidence for successful filling of voids in the cage-like structure of CoSb3 by strontium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renew Sust. Energ Rev. 32, 486 (2014).

    Article  CAS  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  3. G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).

    Article  CAS  Google Scholar 

  4. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 109 (2015).

    Article  CAS  Google Scholar 

  5. S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, Nanotechnology 24, 285702 (2013).

    Article  Google Scholar 

  6. A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, and G.D. Stucky, J. Appl. Phys. 99, 023708 (2006).

    Article  Google Scholar 

  7. T. Caillat, J.P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  CAS  Google Scholar 

  8. G. Rogl and P. Rogl, Curr. Opin. Green Sustain. Chem. 4, 50 (2017).

    Article  Google Scholar 

  9. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, and Z. Ren, Energy Environ. Sci. 5, 7543 (2012).

    Article  CAS  Google Scholar 

  10. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  11. E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Adv. Funct. Mater. 18, 2795 (2008).

    Article  CAS  Google Scholar 

  12. J.O. Sofo and G.D. Mahan, Phys. Rev. B 58, 15620 (1998).

    Article  CAS  Google Scholar 

  13. C. Uher, Semicond. Semimet. 69, 139 (2001).

    Article  CAS  Google Scholar 

  14. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56, 15081 (1997).

    Article  CAS  Google Scholar 

  15. Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, and J. Yang, Appl. Phys. Lett. 95, 042101 (2009).

    Article  Google Scholar 

  16. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  CAS  Google Scholar 

  17. G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  18. H. Liu, H. Gao, Y. Gu, and X. Zhao, J. Rare Earths 29, 596 (2011).

    Article  Google Scholar 

  19. E.S. Toberer, A. Zevalkink, and G.J. Snyder, J. Mater. Chem. 21, 15843 (2011).

    Article  CAS  Google Scholar 

  20. Z.G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, C-MRS 22, 535 (2012).

    Google Scholar 

  21. X. Shi, S. Bai, L. Xi, J. Yang, W. Zhang, and L. Chen, J. Mater. Res. 26, 1745 (2011).

    Article  CAS  Google Scholar 

  22. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).

    Article  Google Scholar 

  23. S.Q. Bai, X.Y. Zhao, Y.Z. Pei, L.D. Chen, and W.Q. Zhang, IEEE 25th International Conference on Thermoelectrics, 145 (2006).

  24. X. Zhao, X. Shi, L. Chen, S.Q. Bai, W.B. Zhang, and X. Tang, Eng. Mater. 336, 842 (2007).

    Google Scholar 

  25. A. Gharleghi, Y.H. Pai, F.H. Lin, and C.J. Liu, J. Mater. Chem. 2, 4213 (2014).

    CAS  Google Scholar 

  26. L. Kumari, W. Li, J. Huang, and P.P. Provencio, Nanoscale Res. Lett. 5, 1698 (2010).

    Article  CAS  Google Scholar 

  27. J. Lee, B.K. Yu, Y.I. Jhon, J. Koo, S.J. Kim, Y.M. Jhon, and J.H. Lee, Adv. Optical Mater. 5, 1700096 (2017).

    Article  Google Scholar 

  28. M.U. Kumar, R. Swetha, and L. Kumari, J. Phys Conf. Ser. 1495, 012006 (2020).

    Article  Google Scholar 

  29. R. Swetha, M.U. Kumar, and L. Kumari, AIP Conf. Proc. 2162, 020104 (2019).

    Article  CAS  Google Scholar 

  30. J.L. Mi, X.B. Zhao, T.J. Zhu, J.P. Tu, and G.S. Cao, J. Alloys Compd. 417, 269 (2006).

    Article  CAS  Google Scholar 

  31. X. Shi, W. Zhang, L.D. Chen, and C. Uher, Int. J. Mat. Res. 99, 638 (2008).

    Article  CAS  Google Scholar 

  32. M.U. Kumar, R. Swetha, M.V. Murugendrappa, and L. Kumari, AIP Conf. Proc. 2162, 020054 (2019).

    Article  Google Scholar 

  33. T.H. Schmidt, G. Kliche, and H.D. Lutz, Acta. Cryst. C 43, 1678 (1987).

    Article  Google Scholar 

  34. S.B. Mary and A.L. Rajesh, IJSRST 3, 140 (2017).

    Google Scholar 

  35. S. Ariponnammal and R. Velvizhi, Res. J. Recent Sci. 3, 332 (2014).

    Google Scholar 

  36. A. Jamal, M.M. Rahman, S.B. Khan, M. Faisal, K. Akhtar, M.A. Rubb, A.M. Asiri, and A.O. Al-Youbi, Appl. Surf. Sci. 261, 52 (2012).

    Article  CAS  Google Scholar 

  37. D. Mohanta, N. Mishra, and A. Choudhury, Mater. Lett. 58, 3694 (2004).

    Article  CAS  Google Scholar 

  38. V. Sharma, S.P. Singh, G.S. Mudahar, and K.S. Thind, New J. Glass Ceram. 2, 133 (2012).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by VGST GoK K-FIST (Level 1) under Grant No. VGST/GRD-552-/2016-17/2017-18. The authors would like to thank the Department of Chemistry and Department of Physics, B.M.S. College of Engineering for UV–visible absorption spectroscopy and FTIR measurement facilities, respectively. We extend our thanks to the Centre for Nano and Material Sciences, Jain University for the pXRD characterization facility under the NANOMISSION PROJECT “SR/NM/NS-20/2014” and DST-PURSE Laboratory, Mangalore University for providing the FESEM-EDX facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latha Kumari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.U., Swetha, R. & Kumari, L. Structural and Optical Studies on Strontium-Filled CoSb3 Nanoparticles Via a Solvo-/Hydrothermal Method. J. Electron. Mater. 50, 1735–1741 (2021). https://doi.org/10.1007/s11664-020-08629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08629-2

Keywords

Navigation