Skip to main content
Log in

Comparison of I–V Characteristics of the Fabricated SnS/Si and SnS:Ag/Si Heterojunction Solar Cell Under Dark and Illumination

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

SnS and SnS-Ag nanocomposite were synthesized by a cost-effective solvothermal technique. Structural properties were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). Elemental composition was confirmed by electron diffraction x-ray analysis (EDAX). The optical properties were characterized by UV–Vis absorption spectra, photoluminescence spectra (PL) and time-correlated single-photon counting (TCSPC). XRD results suggest that the samples are in an orthorhombic structural phase. TEM results indicate that quantum dot-like particles (5 nm to 8 nm) are observed in both SnS and SnS-Ag nanostructures. The crystalline nature of the samples was confirmed by selected-area electron diffraction (SAED). EDAX analysis confirmed that Ag is present in SnS-Ag nanocomposite. From optical absorption study, it is clear that SnS-Ag nanocomposite is a better absorber in sunlight than SnS nanocrystal. A decrease in the band gap of SnS-Ag nanocomposite was observed compared to SnS. The PL study indicates that a peak shift of SnS-Ag nanocomposite was observed towards the higher wavelength side. Our aim is to grow cost-effective heterojunction solar cells with good efficiency. JV characteristics of the fabricated SnS/Si and SnS:Ag/Si heterojunction solar cells have been studied under dark as well as under illumination. Open-circuit voltage (Voc), short-circuit current (Jsc), fill factor (FF) as well as efficiency (η) were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.K. Todorov, K.B. Reuter, and D.B. Mitzi, Adv. Mater. 22, E156 (2010).

    Article  CAS  Google Scholar 

  2. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale 3, 4088 (2011).

    Article  CAS  Google Scholar 

  3. J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993).

    Article  CAS  Google Scholar 

  4. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, and H. Deligianni, Adv. Energy Mater. 2, 253 (2012).

    Article  CAS  Google Scholar 

  5. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J.H. Ebinger, and A.W.Y.H. Baillie, Prog. Photovolt. Res. Appl. 26, 3 (2018).

    Article  Google Scholar 

  6. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, and R.G. Gordon, Adv. Energy Mater. 1400496, 1 (2014).

    Google Scholar 

  7. J.M. Skelton, L.A. Burton, F. Oba, and A. Walsh, J. Phys. Chem. C 121, 6446 (2017).

    Article  CAS  Google Scholar 

  8. P.R. Bommireddy, C.S. Musalikunta, C. Uppala, and S.-H. Park, Mater. Sci. Semicond. Process. 71, 139 (2017).

    Article  CAS  Google Scholar 

  9. A. Basaka, A. Mondala, and U.P. Singh, Mater. Sci. Semicond. Process. 56, 381 (2016).

    Article  CAS  Google Scholar 

  10. A. Urbaniak, M. Pawłowski, M. Marzantowicz, T. Sall, and B. Marí, Thin Solid Films 636, 158 (2017).

    Article  CAS  Google Scholar 

  11. H. Zhu, D. Yang, Y. Ji, H. Zhang, and X. Shen, J. Mater. Sci. 40, 591 (2005).

    Article  CAS  Google Scholar 

  12. A.L. Rogach, Mater. Sci. Eng. B 69–70, 435 (2000).

    Article  Google Scholar 

  13. Y.-L. Lee and Y.-S. Lo, Adv. Funct. Mater. 19, 604 (2009).

    Article  Google Scholar 

  14. C. Piliego, L. Protesescu, S.Z. Bisri, M.V. Kovalenko, and M.A. Loi, Energy Environ. Sci. 6, 3054 (2013).

    Article  CAS  Google Scholar 

  15. P. Jain, P. Shokeen, and P. Arun, J. Mater. Sci. Mater. Electron. 27, 5107 (2016).

    Article  CAS  Google Scholar 

  16. S. Pillai, K.R. Catchpole, T. Trupke, and M.A. Green, J. Appl. Phys. 101, 093105 (2007).

    Article  CAS  Google Scholar 

  17. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  CAS  Google Scholar 

  18. P. Jain and P. Arun, J. Appl. Phys. 115, 204512 (2014).

    Article  CAS  Google Scholar 

  19. Y. Zhao, Z. Zhang, H. Dang, and W. Liu, Mater. Sci. Eng. B 113, 175 (2004).

    Article  Google Scholar 

  20. J. Liu and D. Xue, Electrochim. Acta 56, 243 (2010).

    Article  CAS  Google Scholar 

  21. M.C. Rodriguez, H. Martinez, A.S. Juarez, J.C. Alvarez, A.T. Silver, and M.E. Calixto, Thin Solid Films 517, 2497 (2009).

    Article  CAS  Google Scholar 

  22. S.S. Hegde, A.G. Kunjomana, K.A. Chandrasekharan, K. Ramesh, and M. Prashantha, Physica B 406, 1143 (2011).

    Article  CAS  Google Scholar 

  23. L.A. Burton and A. Walsha, Appl. Phys. Lett. 102, 132111 (2013).

    Article  CAS  Google Scholar 

  24. X. Chen, Y. Hou, B. Zhang, X.H. Yang, and H.G. Yang, Chem. Commun. 49, 5793 (2013).

    Article  CAS  Google Scholar 

  25. J. Lu, C. Nan, L. Li, Q. Peng, and Y. Li, Nano Res. 6, 55 (2013).

    Article  CAS  Google Scholar 

  26. C. Rana, S.R. Bera, and S. Saha, J. Mater. Sci. Mater. Electron. 30, 2016 (2019).

    Article  CAS  Google Scholar 

  27. Z. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, and Y. Liu, Solut. ACS Nano 6, 6197 (2012).

    Article  CAS  Google Scholar 

  28. M.S. Mahdi, K. Ibrahim, A. Hmood, N.M. Ahmed, F.I. Mustafa, and S.A. Azzez, Mater. Lett. 200, 10 (2017).

    Article  CAS  Google Scholar 

  29. J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liua, and G. Zoua, Nanoscale 2, 1699 (2010).

    Article  CAS  Google Scholar 

  30. S.R. Suryawanshi, S.S. Warule, S.S. Patil, K.R. Patil, and M.A. More, ACS Appl. Mater. Interfaces 6, 2018 (2014).

    Article  CAS  Google Scholar 

  31. A.M. Tripathi and S. Mitra, RSC Adv. 20, 10358 (2014).

    Article  CAS  Google Scholar 

  32. S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, C. Ghosh, R. Divakar, C.N. Venkiteswaran, N.G. Muralidharan, A.K. Arora, and E. Mohandas, Mater. Lett. 65, 1148 (2011).

    Article  CAS  Google Scholar 

  33. M.S. Niasari, D. Ghanbari, and F. Davar, J. Alloys Compd. 492, 570 (2010).

    Article  CAS  Google Scholar 

  34. S.H. Chaki, M.D. Chaudhary, and M.P. Deshpande, J. Semicond. 37, 053001 (2016).

    Article  CAS  Google Scholar 

  35. W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, and W. Xiang, Adv. Powder Technol. 23, 850 (2012).

    Article  CAS  Google Scholar 

  36. K.H. Abass, A. Adil, and M.K. Mohammed, J. Eng. Appl. Sci. 13, 919 (2018).

    Google Scholar 

  37. K.T.R. Reddy, N.K. Reddy, and R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006).

    Article  CAS  Google Scholar 

  38. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, and R.G. Gordon, Adv. Energy Mater. 4, 1400496 (2014).

    Article  CAS  Google Scholar 

  39. Z. Wang, S. Qu, X. Zeng, J. Liu, C. Zhang, F. Tan, L. Jin, and Z. Wang, J. Alloys Compd. 482, 203 (2009).

    Article  CAS  Google Scholar 

  40. S.H. Chaki, M.D. Chaudhary, and M.P. Deshpande, Mater. Res. Bull. 63, 173 (2015).

    Article  CAS  Google Scholar 

  41. Y.A. Kalandaragh, A. Khodayari, Z. Zeng, C.S. Garoufalis, S. Baskoutas, and L.C. Gontard, J. Nanopart. Res. 15, 1388 (2013).

    Article  CAS  Google Scholar 

  42. S.C. Warren and E. Thimsen, Energy Environ. Sci. 5, 5133 (2012).

    Article  CAS  Google Scholar 

  43. M. Valenti, E. Kontoleta, I. Digdaya, M. Jonsson, G. Biskos, A. Schmidt-Ott, and W. Smith, ChemNanoMat 2, 739 (2016).

    Article  CAS  Google Scholar 

  44. C. Clavero, Nat. Photonics 8, 95 (2014).

    Article  CAS  Google Scholar 

  45. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, J. Phys. Chem. B 107, 668 (2002).

    Article  CAS  Google Scholar 

  46. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).

    Article  CAS  Google Scholar 

  47. M. Valenti, M.P. Jonsson, G. Biskos, A. Schmidt-Ott, and W.A. Smith, J. Mater. Chem. A 4, 17891 (2016).

    Article  CAS  Google Scholar 

  48. S.R. Bera and S. Saha, Appl. Phys. A 124, 287 (2018).

    Article  CAS  Google Scholar 

  49. B. Ghosh, M. Das, P. Banerjee, and S. Das, Semicond. Sci. Technol. 24, 025024 (2009).

    Article  CAS  Google Scholar 

  50. H.H. Park, R. Heasley, L. Sun, V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, P. Sinsermsuksakul, D. Chua, T. Buonassisi, and R.G. Gordon, Prog. Res. Appl. Photovolt. (2014). https://doi.org/10.1002/pip.2504.

    Article  Google Scholar 

  51. D. Avellaneda, M.T.S. Nair, and P.K. Nair, Thin Solid Films 517, 2500 (2009).

    Article  CAS  Google Scholar 

  52. B. Ghosh, M. Das, P. Banerjee, and S. Das, Energy Mater. Sol. Cells 92, 1099 (2008).

    Article  CAS  Google Scholar 

  53. V.F. Gremenok, V.A. Ivanov, H. Izadneshan, V.V. Lazenka, and A. Bakouie, Nanosyst. Phys. Chem. Math. 5, 789 (2014).

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grant Commission (UGC) and Department of Science and Technology (DST) for their constant financial support and for providing various instrumental facilities to the Department of Physics of Vidyasagar University. The authors are also grateful to the University Science Instrumentation Centre (USIC) of Vidyasagar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Rana.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, C., Bera, S.R. & Saha, S. Comparison of I–V Characteristics of the Fabricated SnS/Si and SnS:Ag/Si Heterojunction Solar Cell Under Dark and Illumination. J. Electron. Mater. 50, 1177–1188 (2021). https://doi.org/10.1007/s11664-020-08621-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08621-w

Keywords

Navigation