Skip to main content
Log in

Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles

  • Progress and Challenges of Perovskite Materials and Devices
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the current investigation, it is demonstrated that the absorption of an organic–inorganic hybrid crystalline-based CH3NH3PbX3 perovskite solar cell can be amply enhanced using noble metal nanoparticles that are coupled in double and triple formation. Due to boosted localized surface plasmon resonance (LSPR), the photocurrent is anticipated to improve. At first, by the incorporation of Ag-Au core–shell nanoparticles, the absorption spectrum of an ultrathin perovskite solar cell is calculated. The results show that the photocurrent is increased to 16.45 mA/cm3 for a cell with a thickness of 100 nm, with an enhancement factor of 22.67% in comparison to the reference cell. Using the proposed arrangement of nanoparticles inside the designated perovskite material, its photocurrent density rises from 13.41 mA/cm2 to 19.81 mA/cm2 and 20.2 mA/cm2 for the double and triple arrangement of nanoparticles, respectively. This improves the photocurrent ratio from 22.67% up to 47% and 50.63%, respectively. Moreover, the boosted photon absorption is confirmed through the electrical field distribution illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.M. Powell, M.T. Winkler, H. Choi, C.B. Simmons, D.B. Needleman, and T. Buonassisi, Energy Environ. Sci. 5, 5874 (2012).

    Article  Google Scholar 

  2. Z. Luo, T. Wang, and J. Gong, Chem. Soc. Rev. 48, 2158 (2019).

    Article  CAS  Google Scholar 

  3. H. Heidarzadeh, A. Rostami, S. Matloub, M. Dolatyari, and G. Rostami, Appl. Opt. 54, 3591 (2015).

    Article  CAS  Google Scholar 

  4. H. Heidarzadeh and A. Tavousi, Mater. Sci. Eng., B 240, 1 (2019).

    Article  CAS  Google Scholar 

  5. R. Schmager, G. Gomard, B.S. Richards, and U.W. Paetzold, Solar Energy Mater. Solar Cells 192, 65 (2019).

    Article  CAS  Google Scholar 

  6. M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nature photon. 8, 506 (2014).

    Article  CAS  Google Scholar 

  7. H.-S. Kim, S.H. Im, and N.-G. Park, J. Phys. Chem. C 118, 5615 (2014).

    Article  CAS  Google Scholar 

  8. M.K. Assadi, S. Bakhoda, R. Saidur, and H. Hanaei, Renew. Sustain. Energy Rev. 81, 2812 (2018).

    Article  CAS  Google Scholar 

  9. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, and A. Hagfeldt, Science 354, 206 (2016).

    Article  CAS  Google Scholar 

  10. H. Heidarzadeh, Mater. Res. Express 5, 036208 (2018).

    Article  Google Scholar 

  11. B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Puretzky, S. Das, I. Ivanov, C. Rouleau, G. Duscher, and D. Geohegan, J. Am. Chem. Soc. 137, 9210 (2015).

    Article  CAS  Google Scholar 

  12. H. Tsai, R. Asadpour, J.-C. Blancon, C.C. Stoumpos, O. Durand, J.W. Strzalka, B. Chen, R. Verduzco, P.M. Ajayan, and S. Tretiak, Science 360, 67 (2018).

    Article  CAS  Google Scholar 

  13. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, and M.A. Alam, Science 347, 522 (2015).

  14. C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, J. Phys. Chem. C 122, 15973 (2018).

    Article  CAS  Google Scholar 

  15. V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, and I. Mora-Sero, J. Bisquert 14, 888 (2014).

    CAS  Google Scholar 

  16. S. Carretero-Palacios, M.E. Calvo, and H. Míguez, J. Phys. Chem. C 119, 18635 (2015).

    Article  CAS  Google Scholar 

  17. H. Heidarzadeh and F. Mehrfar, Plasmonics 13, 2305 (2018).

    Article  CAS  Google Scholar 

  18. M. Green, Y. Hishikawa, E. Dunlop, D. Levi, J.H.- Ebinger, and A.W.Y.H.- Baillie, Prog. Photovolt. Res. Appl. 26, 3 (2018).

    Article  Google Scholar 

  19. H. Dong, T. Lei, F. Yuan, J. Xu, Y. Niu, B. Jiao, Z. Zhang, D. Ding, X. Hou, and Z. Wu, Org. Electr. 60, 1 (2018).

    Article  CAS  Google Scholar 

  20. A. Abass, H. Shen, P. Bienstman, B. Maes, Optical Society of America, pp. PWA5 (2010).

  21. C.L. Chochos, R. Singh, M. Kim, N. Gasparini, A. Katsouras, C. Kulshreshtha, V.G. Gregoriou, P.E. Keivanidis, T. Ameri, and C.J. Brabec, Adv. Funct. Mater. 26, 1840 (2016).

    Article  CAS  Google Scholar 

  22. M. Tang, B. Sun, D. Zhou, Z. Gu, K. Chen, J. Guo, L. Feng, and Y. Zhou, Org. Electr. 38, 213 (2016).

    Article  CAS  Google Scholar 

  23. T. Segal-Peretz, O. Sorias, M. Moshonov, I. Deckman, M. Orenstein, and G.L. Frey, Org. Electro. 23, 144 (2015).

    Article  CAS  Google Scholar 

  24. W.-J. Ho, S.-K. Feng, J.-J. Liu, Y.-C. Yang, C.-H. Ho, 439, 868 (2018).

  25. W.-J. Ho, P.-Y. Cheng, and K.-Y. Hsiao, Appl. Surf. Sci. 354, 25 (2015).

    Article  CAS  Google Scholar 

  26. G. Mokari and H. Heidarzadeh, Efficiency enhancement of an ultra-thin silicon solar cell using plasmonic coupled core-shell nanoparticles. Plasmonics 14, 1041 (2019).

    Article  CAS  Google Scholar 

  27. H. Heidarzadeh, A. Rostami, M. Dolatyari, and G. Rostami, Appl. Opt. 55, 1779 (2016).

    Article  CAS  Google Scholar 

  28. M. Janfaza, M.A. Mansouri-Birjandi, and A. Tavousi, Opt. Mater. 84, 675 (2018).

    Article  CAS  Google Scholar 

  29. K.M. Mayer and J.H. Hafner, Chem. Rev. 111, 3828 (2011).

    Article  CAS  Google Scholar 

  30. H. Heidarzadeh, IEEE Trans. Nanotechnol. 397, 19 (2020).

    Google Scholar 

  31. H. Heidarzadeh, Optics Communications 459, 124940 (2020).

    Article  CAS  Google Scholar 

  32. H. Bahador and H. Heidarzadeh, Plasmonics 15, 1273 (2020).

    Article  Google Scholar 

  33. M. Bajpai, C. Pandey, R. Srivastava, R. Malik, G.P. Shukla, R. Dhar, A. Katiyar, B. Narayan, AIP Conference Proceedings, AIP Publishing, 020023 (2018).

  34. F. Enrichi, A. Quandt, and G.C. Righini, Renew. Sustain. Energy Rev. 82, 2433 (2018).

    Article  CAS  Google Scholar 

  35. W.-Y. Rho, H.-Y. Yang, H.-S. Kim, B.S. Son, J.S. Suh, and B.-H. Jun, J. Solid State Chem. 258, 271 (2018).

    Article  CAS  Google Scholar 

  36. S. Chang, Q. Li, X. Xiao, K.Y. Wong, and T. Chen, Energy Environ. Sci. 5, 9444 (2012).

    Article  CAS  Google Scholar 

  37. F. Sobhani, H. Heidarzadeh, and H. Bahador, Chinese Phys. B 29, 068401 (2020).

    Article  CAS  Google Scholar 

  38. F. Sobhani, H. Heidarzadeh, and H. Bahador, Opt. Quantum Electr. 52, 1 (2020).

    Article  Google Scholar 

  39. A. Jangjoy, H. Bahador, and H. Heidarzadeh, Opt. Commun. 450, 216 (2019).

    Article  CAS  Google Scholar 

  40. C.-H. Poh, L. Rosa, S. Juodkazis, and P. Dastoor, Opt. Mater. Express 1, 1326 (2011).

    Article  CAS  Google Scholar 

  41. R.S. Kim, J. Zhu, J.H. Park, L. Li, Z. Yu, H. Shen, M. Xue, K.L. Wang, G. Park, and T.J. Anderson, Opt. Express 20, 12649 (2012).

    Article  CAS  Google Scholar 

  42. C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, J. Mater. Chem. A 3, 9152 (2015).

    Article  CAS  Google Scholar 

  43. E.D. Palik, Hand Book of Optical Constants of Solids (Cambridge: Academic press, 1998).

    Google Scholar 

  44. H. Cha, D. Lee, J.H. Yoon, and S. Yoon, J. Colloid Interface Sci. 464, 18 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the deputy of research of University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Heidarzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarzadeh, H., Tavousi, A. Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles. J. Electron. Mater. 50, 1817–1826 (2021). https://doi.org/10.1007/s11664-020-08612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08612-x

Keywords

Navigation