Skip to main content

Elastic and Optoelectronic Properties of Cs2NaMCl6 (M = In, Tl, Sb, Bi)

Abstract

In this article, elpasolite perovskites, Cs2NaMCl6 (M = In, Tl, Sb, Bi), are investigated using density functional theory (DFT). Structural properties like lattice constants and bond lengths are in agreement with the available experimental data. Electronic properties are calculated by several DFT exchange-correlation approximations, and it is found that a modified Becke–Johnson (mBJ) approximation along with the inclusion of spin orbit coupling (SOC) gives the most promising results. The M-site cation decides the nature of the band gap; i.e. direct band gaps are obtained for group IIIA elements (In, Tl), and indirect band gaps are experiential for group VA elements (Sb, Bi). Narrow discrete energy bands are observed in the valence and conduction bands, which make these compounds suitable for scintillation applications. SOC induces splitting of Bi/Sb p orbitals in the conduction band and reduces the band gaps of these double perovskite halides. Obtained values of mechanical parameters confirm that these compounds are ductile and anisotropic. Optical properties, i.e. dielectric functions, energy loss function and refractive index, are also calculated, and interesting variations are found which can play a important role in scintillation and other optoelectronic applications of these materials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. Fu, H. Zhu, J. Chen, M.P. Hautzinger, X.Y. Zhu, and S. Jin, Nat. Rev. Mater. 4, 169 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, and J. You, Nat. Photon. 13, 460 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q. Xiong, and Z. Wei, Nature 562, 245 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    R. Zeng, L. Zhang, Y. Xue, B. Ke, Z. Zhao, D. Huang, Q. Wei, W. Zhou, and B. Zou, J. Phys. Chem. Lett. 11, 2053 (2020).

    CAS  Article  Google Scholar 

  5. 5.

    P. Han, X. Mao, S. Yang, F. Zhang, B. Yang, D. Wei, W. Deng, and K. Han, Angew. Chem. 131, 1 (2019).

    Google Scholar 

  6. 6.

    X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, and W. Yang, Adv. Funct. Mater. 24, 7373 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    P. Zhang, J. Yang, and S.H. Wei, J. Mater. Chem. A 6, 1809 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    B.J. Kennedy, C.J. Howard, K.S. Knight, Z. Zhang, and Q. Zhou, Acta. Cryst. Sect. B Struct. Sci. 62, 537 (2006).

    Article  CAS  Google Scholar 

  9. 9.

    F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli, L.D. Trizio, and L. Manna, J. Am. Chem. Soc. 140, 12989 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    F. Igbari, Z.-K. Wang, and L.S. Liao, Adv. Energy Mater. 9, 1803150 (2019).

    Article  CAS  Google Scholar 

  11. 11.

    X.G. Zhao, D. Yang, J.-C. Ren, Y. Sun, Z. Xiao, and L. Zhang, Joule 2, 1662 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Q. Zhang, F. Hao, J. Li, Y. Zhou, Y. Wei, and H. Lin, Sci. Tech. Adv. Mater. 19, 425 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, and J. Tang, ACS Photon. 5, 398 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    J. Zhou, X. Rong, P. Zhang, M.S. Molokeev, P. Wei, Q. Liu, X. Zhang, and Z. Xia, Adv. Opt. Mater. 7, 1801435 (2019).

    Article  CAS  Google Scholar 

  15. 15.

    L. Zhou, Y.F. Xu, B.X. Chen, D.B. Kuang, and C.Y. Su, Small 14, 1703762 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    J.D. Majher, M.B. Gray, T.A. Strom, and P.M. Woodward, Chem. Mater. 31, 1738 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang, Y. Sun, J. Yang, and X. Li, Nano-Micro Lett. 11, 16 (2019).

    Article  Google Scholar 

  18. 18.

    Z. Weng, J. Qin, A.A. Umar, J. Wang, X. Zhang, H. Wang, X. Cui, X. Li, L. Zheng, and Y. Zhan, Adv. Funct. Mater. 29, 1902234 (2019).

    Article  CAS  Google Scholar 

  19. 19.

    W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, Nat. Photon. 11, 726 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen, and D. Xu, Angew. Chem. Int. Ed. 58, 7263 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    C.C. Wu, Q.H. Zhang, Y. Liu, W. Luo, X. Guo, Z.R. Huang, H. Ting, W.H. Sun, X.R. Zhong, S.Y. Wei, S.F. Wang, Z.J. Chen, and L.X. Xiao, Adv. Sci. 5, 1700759 (2018).

    Article  CAS  Google Scholar 

  22. 22.

    S. Ghosh and B. Pradhan, Chem. NanoMat. 5, 300 (2019).

    CAS  Google Scholar 

  23. 23.

    C.N. Savory, A. Walsh, and D.O. Scanlon, ACS Energy Lett. 1, 949 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    M.R. Filip, S. Hillman, A.A. Haghighirad, H.J. Snaith, and F. Giustino, J. Phys. Chem. Lett. 7, 2579 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    E.T. McClure, M.R. Ball, W. Windl, and P.M. Woodward, Chem. Mater. 28, 1348 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    A.H. Slavney, T. Hu, A.M. Lindenberg, and H.I. Karunadasa, J. Am. Chem. Soc. 138, 2138 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, and F. Giustino, J. Phys. Chem. Lett. 7, 1254 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    H. Shi and M.-H. Du, Phys. Rev. Appl. 3, 054005 (2015).

    Article  CAS  Google Scholar 

  29. 29.

    W. Lee, D. Choi, and S. Kim, Chem. Mater. 32, 6864 (2020).

    CAS  Article  Google Scholar 

  30. 30.

    P.R. Varadwaj, Nanomaterials 10, 973 (2020).

    CAS  Article  Google Scholar 

  31. 31.

    M.M. Yao, L. Wang, J.S. Yao, K.H. Wang, C. Chen, B.S. Zhu, J.N. Yang, J.J. Wang, W.P. Xu, Q. Zhang, and H.B. Yao, Adv. Optical Mater. 8, 1901919 (2020).

    CAS  Article  Google Scholar 

  32. 32.

    K. Hoang, S.D. Mahanti, and M.G. Kanatzidis, Phys. Rev. B 8, 1115106 (2010).

    Google Scholar 

  33. 33.

    Q. Hu, G. Niu, Z. Zheng, S. Li, Y. Zhang, H. Song, T. Zhai, and J. Tang, Small 15, 1903496 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, and C. Zhao, Nature 563, 541 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    M.K. Han, K. Hoang, H. Kong, R. Pcionek, C. Uher, K.M. Paraskevopoulos, S.D. Mahanti, and M.G. Kanatzidis, Chem. Mater. 20, 3512 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    S. Wang and J. Yu, J. Supercond. Nov. Magn. 31, 2789 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    K. Hoang and S.D. Mahanti, Phys. Rev. B 78, 085111 (2008).

    Article  CAS  Google Scholar 

  38. 38.

    K. Hoang, K. Desai, and S.D. Mahanti, Phys. Rev. B 72, 064102 (2005).

    Article  CAS  Google Scholar 

  39. 39.

    P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, and L.D. Marks, J. Chem. Phys. 152, 074101 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  41. 41.

    H. Jiang, J. Chem. Phys. 134, 204705 (2011).

    Article  CAS  Google Scholar 

  42. 42.

    I. Khan, I. Ahmad, H.A.R. Aliabad, and M. Maqbool, J. Appl. Phys. 112, 073104 (2012).

    Article  CAS  Google Scholar 

  43. 43.

    I. Khan, I. Ahmad, H.A.R. Aliabad, S.J. Asadabadi, Z. Ali, and M. Maqbool, Comput. Mater. Sci. 77, 145 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  45. 45.

    B. Traoré, G. Bouder, W.L.D. Hauret, X. Rocquefelte, C. Katan, F. Tran, and M. Kepenekian, Phys. Rev. B 99, 035139 (2019).

    Article  Google Scholar 

  46. 46.

    F. Birch, Phys. Rev. 71, 809 (1947).

    CAS  Article  Google Scholar 

  47. 47.

    L.R. Morss, M. Siegal, L. Stenger, and N. Edelstein, Inorg. Chem. 9, 1771 (1970).

    CAS  Article  Google Scholar 

  48. 48.

    G. Meyer, S.J. Hwu, and J.D. Corbett, Z. Anorg. Allg. Chem. 536, 208 (1986).

    Article  Google Scholar 

  49. 49.

    F.A. Ponce and D.P. Bour, Nature 386, 351 (1997).

    CAS  Article  Google Scholar 

  50. 50.

    M. Sun, Q. Ren, S. Wang, J. Yu, and W. Tang, J. Phys. D Appl. Phys. 49, 445305 (2016).

    Article  CAS  Google Scholar 

  51. 51.

    S. Wang and J. Wang, Phys. B 458, 22 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun, Phys. Chem. Chem. Phys. 20, 13394 (2018).

    CAS  Article  Google Scholar 

  53. 53.

    Y. Luo, K. Ren, S. Wang, J.P. Chou, J. Yu, Z. Sun, and M. Sun, J. Phys. Chem. C 123, 22742 (2019).

    CAS  Article  Google Scholar 

  54. 54.

    Y. Luo, S. Wang, K. Ren, J.P. Chou, J. Yu, Z. Sun, and M. Sun, Phys. Chem. Chem. Phys. 21, 1791 (2019).

    CAS  Article  Google Scholar 

  55. 55.

    S.K. Wang, J. Wang, and K.S. Chan, New J. Phys. 16, 045015 (2014).

    Article  CAS  Google Scholar 

  56. 56.

    G. Shwetha, V. Kanchana, and G. Vaitheeswaran, J. Solid State Chem. 227, 110 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    I. Khan, N. Shehzad, I. Ahmad, Z. Ali, and S.J. Asadabadi, Inter. J. Modern Phys. B 31, 1750148 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, J. Phys. Chem. Lett. 4, 4213 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    S. Nair, M. Deshpande, V. Shah, S. Ghaisas, and S. Jadkar, J. Phys. Conden. Matter 31, 445902 (2019).

    CAS  Article  Google Scholar 

  60. 60.

    R.F. Egerton, Rep. Prog. Phys. 72, 016502 (2009).

    Article  CAS  Google Scholar 

  61. 61.

    S. Loughin, R.H. French, L.K. Noyer, W.Y. Ching, and Y.N. Xu, J. Phys. D 29, 1740 (1996).

    CAS  Article  Google Scholar 

  62. 62.

    H.A.R. Aliabad, S.M. Hosseini, A. Kompany, A. Youssefi, and E.A. Kakhki, Phys. Status Solidi B 246, 1072 (2009).

    CAS  Article  Google Scholar 

  63. 63.

    C. Kittel, Introduction to solid state physics (Hoboken: Wiley, 1996).

    Google Scholar 

  64. 64.

    M. Born, On the stability of crystal lattices (Cambridge: Cambridge University Press, 1940).

    Google Scholar 

  65. 65.

    S.R. Elliott, The physics and chemistry of solids (Chichester: Wiley, 1998).

    Google Scholar 

  66. 66.

    X. Wang, H. Xiang, X. Sun, J. Liu, F. Hou, and Y. Zhou, J. Mater. Sci. Tech. 31, 369 (2015).

    Article  CAS  Google Scholar 

  67. 67.

    J.F. Nye, Physical properties of crystals: Their representation by tensors and matrices (New York: Oxford University Press, 1985).

    Google Scholar 

  68. 68.

    I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic constants and elastic moduli of metals and insulators handbook Naukova Dumka, Kiev, 1983.

  69. 69.

    S.F. Pugh, Philos. Mag. 45, 823 (1954).

    CAS  Article  Google Scholar 

  70. 70.

    D.G. Pettifor, Mater. Sci. Tech. 8, 345 (1992).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Imad Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Shahab, Haq, I.U. et al. Elastic and Optoelectronic Properties of Cs2NaMCl6 (M = In, Tl, Sb, Bi). Journal of Elec Materi 50, 456–466 (2021). https://doi.org/10.1007/s11664-020-08603-y

Download citation

Keywords

  • Halide perovskites
  • discrete electronic bands
  • SOC
  • semiconductors
  • scintillation