Skip to main content
Log in

Elastic and Optoelectronic Properties of Cs2NaMCl6 (M = In, Tl, Sb, Bi)

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this article, elpasolite perovskites, Cs2NaMCl6 (M = In, Tl, Sb, Bi), are investigated using density functional theory (DFT). Structural properties like lattice constants and bond lengths are in agreement with the available experimental data. Electronic properties are calculated by several DFT exchange-correlation approximations, and it is found that a modified Becke–Johnson (mBJ) approximation along with the inclusion of spin orbit coupling (SOC) gives the most promising results. The M-site cation decides the nature of the band gap; i.e. direct band gaps are obtained for group IIIA elements (In, Tl), and indirect band gaps are experiential for group VA elements (Sb, Bi). Narrow discrete energy bands are observed in the valence and conduction bands, which make these compounds suitable for scintillation applications. SOC induces splitting of Bi/Sb p orbitals in the conduction band and reduces the band gaps of these double perovskite halides. Obtained values of mechanical parameters confirm that these compounds are ductile and anisotropic. Optical properties, i.e. dielectric functions, energy loss function and refractive index, are also calculated, and interesting variations are found which can play a important role in scintillation and other optoelectronic applications of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Fu, H. Zhu, J. Chen, M.P. Hautzinger, X.Y. Zhu, and S. Jin, Nat. Rev. Mater. 4, 169 (2019).

    Article  CAS  Google Scholar 

  2. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, and J. You, Nat. Photon. 13, 460 (2019).

    Article  CAS  Google Scholar 

  3. K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q. Xiong, and Z. Wei, Nature 562, 245 (2018).

    Article  CAS  Google Scholar 

  4. R. Zeng, L. Zhang, Y. Xue, B. Ke, Z. Zhao, D. Huang, Q. Wei, W. Zhou, and B. Zou, J. Phys. Chem. Lett. 11, 2053 (2020).

    Article  CAS  Google Scholar 

  5. P. Han, X. Mao, S. Yang, F. Zhang, B. Yang, D. Wei, W. Deng, and K. Han, Angew. Chem. 131, 1 (2019).

    Google Scholar 

  6. X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, and W. Yang, Adv. Funct. Mater. 24, 7373 (2014).

    Article  CAS  Google Scholar 

  7. P. Zhang, J. Yang, and S.H. Wei, J. Mater. Chem. A 6, 1809 (2018).

    Article  CAS  Google Scholar 

  8. B.J. Kennedy, C.J. Howard, K.S. Knight, Z. Zhang, and Q. Zhou, Acta. Cryst. Sect. B Struct. Sci. 62, 537 (2006).

    Article  CAS  Google Scholar 

  9. F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli, L.D. Trizio, and L. Manna, J. Am. Chem. Soc. 140, 12989 (2018).

    Article  CAS  Google Scholar 

  10. F. Igbari, Z.-K. Wang, and L.S. Liao, Adv. Energy Mater. 9, 1803150 (2019).

    Article  CAS  Google Scholar 

  11. X.G. Zhao, D. Yang, J.-C. Ren, Y. Sun, Z. Xiao, and L. Zhang, Joule 2, 1662 (2018).

    Article  CAS  Google Scholar 

  12. Q. Zhang, F. Hao, J. Li, Y. Zhou, Y. Wei, and H. Lin, Sci. Tech. Adv. Mater. 19, 425 (2018).

    Article  CAS  Google Scholar 

  13. J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, and J. Tang, ACS Photon. 5, 398 (2018).

    Article  CAS  Google Scholar 

  14. J. Zhou, X. Rong, P. Zhang, M.S. Molokeev, P. Wei, Q. Liu, X. Zhang, and Z. Xia, Adv. Opt. Mater. 7, 1801435 (2019).

    Article  CAS  Google Scholar 

  15. L. Zhou, Y.F. Xu, B.X. Chen, D.B. Kuang, and C.Y. Su, Small 14, 1703762 (2018).

    Article  CAS  Google Scholar 

  16. J.D. Majher, M.B. Gray, T.A. Strom, and P.M. Woodward, Chem. Mater. 31, 1738 (2019).

    Article  CAS  Google Scholar 

  17. L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang, Y. Sun, J. Yang, and X. Li, Nano-Micro Lett. 11, 16 (2019).

    Article  Google Scholar 

  18. Z. Weng, J. Qin, A.A. Umar, J. Wang, X. Zhang, H. Wang, X. Cui, X. Li, L. Zheng, and Y. Zhan, Adv. Funct. Mater. 29, 1902234 (2019).

    Article  CAS  Google Scholar 

  19. W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, and J. Tang, Nat. Photon. 11, 726 (2017).

    Article  CAS  Google Scholar 

  20. Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen, and D. Xu, Angew. Chem. Int. Ed. 58, 7263 (2019).

    Article  CAS  Google Scholar 

  21. C.C. Wu, Q.H. Zhang, Y. Liu, W. Luo, X. Guo, Z.R. Huang, H. Ting, W.H. Sun, X.R. Zhong, S.Y. Wei, S.F. Wang, Z.J. Chen, and L.X. Xiao, Adv. Sci. 5, 1700759 (2018).

    Article  CAS  Google Scholar 

  22. S. Ghosh and B. Pradhan, Chem. NanoMat. 5, 300 (2019).

    CAS  Google Scholar 

  23. C.N. Savory, A. Walsh, and D.O. Scanlon, ACS Energy Lett. 1, 949 (2016).

    Article  CAS  Google Scholar 

  24. M.R. Filip, S. Hillman, A.A. Haghighirad, H.J. Snaith, and F. Giustino, J. Phys. Chem. Lett. 7, 2579 (2016).

    Article  CAS  Google Scholar 

  25. E.T. McClure, M.R. Ball, W. Windl, and P.M. Woodward, Chem. Mater. 28, 1348 (2016).

    Article  CAS  Google Scholar 

  26. A.H. Slavney, T. Hu, A.M. Lindenberg, and H.I. Karunadasa, J. Am. Chem. Soc. 138, 2138 (2016).

    Article  CAS  Google Scholar 

  27. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, and F. Giustino, J. Phys. Chem. Lett. 7, 1254 (2016).

    Article  CAS  Google Scholar 

  28. H. Shi and M.-H. Du, Phys. Rev. Appl. 3, 054005 (2015).

    Article  CAS  Google Scholar 

  29. W. Lee, D. Choi, and S. Kim, Chem. Mater. 32, 6864 (2020).

    Article  CAS  Google Scholar 

  30. P.R. Varadwaj, Nanomaterials 10, 973 (2020).

    Article  CAS  Google Scholar 

  31. M.M. Yao, L. Wang, J.S. Yao, K.H. Wang, C. Chen, B.S. Zhu, J.N. Yang, J.J. Wang, W.P. Xu, Q. Zhang, and H.B. Yao, Adv. Optical Mater. 8, 1901919 (2020).

    Article  CAS  Google Scholar 

  32. K. Hoang, S.D. Mahanti, and M.G. Kanatzidis, Phys. Rev. B 8, 1115106 (2010).

    Google Scholar 

  33. Q. Hu, G. Niu, Z. Zheng, S. Li, Y. Zhang, H. Song, T. Zhai, and J. Tang, Small 15, 1903496 (2019).

    Article  CAS  Google Scholar 

  34. J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, and C. Zhao, Nature 563, 541 (2018).

    Article  CAS  Google Scholar 

  35. M.K. Han, K. Hoang, H. Kong, R. Pcionek, C. Uher, K.M. Paraskevopoulos, S.D. Mahanti, and M.G. Kanatzidis, Chem. Mater. 20, 3512 (2008).

    Article  CAS  Google Scholar 

  36. S. Wang and J. Yu, J. Supercond. Nov. Magn. 31, 2789 (2018).

    Article  CAS  Google Scholar 

  37. K. Hoang and S.D. Mahanti, Phys. Rev. B 78, 085111 (2008).

    Article  CAS  Google Scholar 

  38. K. Hoang, K. Desai, and S.D. Mahanti, Phys. Rev. B 72, 064102 (2005).

    Article  CAS  Google Scholar 

  39. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, and L.D. Marks, J. Chem. Phys. 152, 074101 (2020).

    Article  CAS  Google Scholar 

  40. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  41. H. Jiang, J. Chem. Phys. 134, 204705 (2011).

    Article  CAS  Google Scholar 

  42. I. Khan, I. Ahmad, H.A.R. Aliabad, and M. Maqbool, J. Appl. Phys. 112, 073104 (2012).

    Article  CAS  Google Scholar 

  43. I. Khan, I. Ahmad, H.A.R. Aliabad, S.J. Asadabadi, Z. Ali, and M. Maqbool, Comput. Mater. Sci. 77, 145 (2013).

    Article  CAS  Google Scholar 

  44. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  45. B. Traoré, G. Bouder, W.L.D. Hauret, X. Rocquefelte, C. Katan, F. Tran, and M. Kepenekian, Phys. Rev. B 99, 035139 (2019).

    Article  Google Scholar 

  46. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  CAS  Google Scholar 

  47. L.R. Morss, M. Siegal, L. Stenger, and N. Edelstein, Inorg. Chem. 9, 1771 (1970).

    Article  CAS  Google Scholar 

  48. G. Meyer, S.J. Hwu, and J.D. Corbett, Z. Anorg. Allg. Chem. 536, 208 (1986).

    Article  Google Scholar 

  49. F.A. Ponce and D.P. Bour, Nature 386, 351 (1997).

    Article  CAS  Google Scholar 

  50. M. Sun, Q. Ren, S. Wang, J. Yu, and W. Tang, J. Phys. D Appl. Phys. 49, 445305 (2016).

    Article  CAS  Google Scholar 

  51. S. Wang and J. Wang, Phys. B 458, 22 (2015).

    Article  CAS  Google Scholar 

  52. S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun, Phys. Chem. Chem. Phys. 20, 13394 (2018).

    Article  CAS  Google Scholar 

  53. Y. Luo, K. Ren, S. Wang, J.P. Chou, J. Yu, Z. Sun, and M. Sun, J. Phys. Chem. C 123, 22742 (2019).

    Article  CAS  Google Scholar 

  54. Y. Luo, S. Wang, K. Ren, J.P. Chou, J. Yu, Z. Sun, and M. Sun, Phys. Chem. Chem. Phys. 21, 1791 (2019).

    Article  CAS  Google Scholar 

  55. S.K. Wang, J. Wang, and K.S. Chan, New J. Phys. 16, 045015 (2014).

    Article  CAS  Google Scholar 

  56. G. Shwetha, V. Kanchana, and G. Vaitheeswaran, J. Solid State Chem. 227, 110 (2015).

    Article  CAS  Google Scholar 

  57. I. Khan, N. Shehzad, I. Ahmad, Z. Ali, and S.J. Asadabadi, Inter. J. Modern Phys. B 31, 1750148 (2017).

    Article  CAS  Google Scholar 

  58. G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, J. Phys. Chem. Lett. 4, 4213 (2013).

    Article  CAS  Google Scholar 

  59. S. Nair, M. Deshpande, V. Shah, S. Ghaisas, and S. Jadkar, J. Phys. Conden. Matter 31, 445902 (2019).

    Article  CAS  Google Scholar 

  60. R.F. Egerton, Rep. Prog. Phys. 72, 016502 (2009).

    Article  CAS  Google Scholar 

  61. S. Loughin, R.H. French, L.K. Noyer, W.Y. Ching, and Y.N. Xu, J. Phys. D 29, 1740 (1996).

    Article  CAS  Google Scholar 

  62. H.A.R. Aliabad, S.M. Hosseini, A. Kompany, A. Youssefi, and E.A. Kakhki, Phys. Status Solidi B 246, 1072 (2009).

    Article  CAS  Google Scholar 

  63. C. Kittel, Introduction to solid state physics (Hoboken: Wiley, 1996).

    Google Scholar 

  64. M. Born, On the stability of crystal lattices (Cambridge: Cambridge University Press, 1940).

    Google Scholar 

  65. S.R. Elliott, The physics and chemistry of solids (Chichester: Wiley, 1998).

    Google Scholar 

  66. X. Wang, H. Xiang, X. Sun, J. Liu, F. Hou, and Y. Zhou, J. Mater. Sci. Tech. 31, 369 (2015).

    Article  CAS  Google Scholar 

  67. J.F. Nye, Physical properties of crystals: Their representation by tensors and matrices (New York: Oxford University Press, 1985).

    Google Scholar 

  68. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic constants and elastic moduli of metals and insulators handbook Naukova Dumka, Kiev, 1983.

  69. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  70. D.G. Pettifor, Mater. Sci. Tech. 8, 345 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Shahab, Haq, I.U. et al. Elastic and Optoelectronic Properties of Cs2NaMCl6 (M = In, Tl, Sb, Bi). J. Electron. Mater. 50, 456–466 (2021). https://doi.org/10.1007/s11664-020-08603-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08603-y

Keywords

Navigation