Skip to main content

Advertisement

Log in

Highly Sensitive Reconfigurable Plasmonic Metasurface with Dual-Band Response for Optical Sensing and Switching in the Mid-Infrared Spectrum

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we design a plasmonic metasurface as an optical refractive index sensor with high sensitivity and switching characteristics for the mid-infrared spectral region by employing organic material with reconfigurable attributes. This structure contains a cross element at the center which is surrounded by a frame with four similar rectangular parasitic elements at each corner. The parasitic elements as plasmonic absorbers are exploited for concentrating energy and reducing the reflection from the metasurface. This plasmonic absorber is utilized to improve the figure of merit (FOM) and sensitivity of the sensor because of the semi-Fano characteristic of the reflection response. Organic materials are being employed in this technique to design the absorber due to their distinct switching characteristics inside the gaps between the parasitic elements and cross frame which can be considered for controlling electric field distribution and reflection of the metasurface. The use of organic materials reduces the reflection of the metasurface about −11 dB in comparison to the primary model without organic material. In fact, the equivalent circuit and electric field can be highlighted to describe the features of this absorber and the DNA load effects. The switching ratio is obtained 42 times, and this absorber is modified for 110 THz with a reflection of −32 dB, and the FOM obtained for the sensor is 51 RIU−1, with linear variation and sensitivity of 2440 nm/RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Q. Le, J. Electron. Mater. 47, 2836 (2018).

    CAS  Google Scholar 

  2. S. Ebrahimi, R. Sabbaghi-Nadooshan, and M.B. Tavakoli, Opt. Quantum Electron. 50, 196 (2018).

    Google Scholar 

  3. N. Nozhat and N. Granpayeh, Appl. Opt. 54, 7944 (2015).

    CAS  Google Scholar 

  4. F. Tavakoli, F.B. Zarrabi, and H. Saghaei, Appl. Opt. 58, 5404 (2019).

    CAS  Google Scholar 

  5. R. Negahdari, E. Rafiee, and F. Emami, Opt. Quantum Electron. 51, 235 (2019).

    Google Scholar 

  6. F. Tavakoli and R.A. Sadeghzadeh, J. Electron. Mater. 49, 3269 (2020).

    CAS  Google Scholar 

  7. S. Choi and K. Sarabandi, Appl. Opt. 52, 8432 (2013).

    CAS  Google Scholar 

  8. S. Kim, H.-M. Kim, and Y.-H. Lee, Opt. Lett. 40, 5351 (2015).

    Google Scholar 

  9. A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, IEEE Sens. J. 15, 1588 (2014).

    Google Scholar 

  10. C. Cao and Y. Cheng, Appl. Phys. A 125, 15 (2019).

    Google Scholar 

  11. H. Meng, L. Wang, G. Liu, X. Xue, Q. Lin, and X. Zhai, Appl. Opt. 56, 6022 (2017).

    CAS  Google Scholar 

  12. X. Zou, G. Zheng, Y. Chen, F. Xian, and L. Xu, Opt. Mater. 88, 54 (2019).

    CAS  Google Scholar 

  13. P. Zeng, C. Wang, F. Zhao, P. Cai, and M. Qin, Appl. Opt. 54, 53 (2015).

    Google Scholar 

  14. J.-S. Gómez-Díaz and J. Perruisseau-Carrier, Opt. Express 21, 15490 (2013).

    Google Scholar 

  15. Z. Kang, S. Wang, L. Fan, Z. Xiao, R. Wang, and D. Sun, Mater. Lett. 189, 82 (2017).

    CAS  Google Scholar 

  16. M.R. Soheilifar and F.B. Zarrabi, Opt. Quantum Electron. 51, 155 (2019).

    Google Scholar 

  17. E. Aslan, E. Aslan, M. Turkmen, and O.G. Saracoglu, Opt. Mater. 73, 213 (2017).

    CAS  Google Scholar 

  18. E. Aslan and M. Turkmen, Sens. Actuator A Phys. 259, 127 (2017).

    CAS  Google Scholar 

  19. S. Sharbati, Opt. Quantum Electron. 50, 337 (2018).

    Google Scholar 

  20. A.E. Cetin, M. Turkmen, S. Aksu, and H. Altug, IEEE Trans. Nanotechnol. 11, 208 (2011).

    Google Scholar 

  21. H. Durmaz, Y. Li, and A.E. Cetin, Sens Actuators B Chem 275, 174 (2018).

    CAS  Google Scholar 

  22. E.P. Bellido, G.D. Bernasconi, D. Rossouw, J. Butet, O.J. Martin, and G.A. Botton, ACS Nano 11, 11240 (2017).

    CAS  Google Scholar 

  23. D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, Acs Photonics 5, 4903 (2018).

    CAS  Google Scholar 

  24. S. Kang, Z. Qian, V. Rajaram, S.D. Calisgan, A. Alù, and M. Rinaldi, Adv. Opt. Mater. 7, 1801236 (2019).

    Google Scholar 

  25. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, Opt. Express 22, A1713 (2014).

    Google Scholar 

  26. L. Chen, et’al., Opt. Express 24, 9975 (2016).

    CAS  Google Scholar 

  27. Q. Yan, et’al., Mater. Lett. 247, 131 (2019).

    CAS  Google Scholar 

  28. F.B. Zarrabi, R. Hekmati, M. Bazgir, and S. Ebrahimi, Opt. Quantum Electron. 50, 452 (2018).

    Google Scholar 

  29. A. Farmani, A. Mir, M. Bazgir, and F.B. Zarrabi, Physica E 104, 233 (2018).

    CAS  Google Scholar 

  30. L. Shi, et’al., Opt. Commun. 439, 125 (2019).

    CAS  Google Scholar 

  31. F. Tavakoli and S. Ebrahimi, Opt. Quantum Electron. 51, 185 (2019).

    Google Scholar 

  32. M. Bazgir, M. Jalalpour, F.B. Zarrabi, and A.S. Arezoomand, J. Electron. Mater. 49, 2173 (2020).

    CAS  Google Scholar 

  33. M. Danaie and B. Kiani, Photonics Nanostruct. Fundam. Appl. 31, 89 (2018).

    Google Scholar 

  34. A.K. Pandey and A.K. Sharma, Photonics Nanostruct. Fundam. Appl. 28, 94 (2018).

    Google Scholar 

  35. Z. Chen and L. Yu, IEEE Photonics J. 6, 4802208 (2014).

    Google Scholar 

  36. S.M. Watson, A.R. Pike, J. Pate, A. Houlton, and B.R. Horrocks, Nanoscale 6, 4027 (2014).

    CAS  Google Scholar 

  37. K. Zhao, Q. Chang, X. Chen, B. Zhang, and J. Liu, Mater. Sci. Eng. 29, 1191 (2009).

    Google Scholar 

  38. Y.-S. Liu, P.P. Banada, S. Bhattacharya, A.K. Bhunia, and R. Bashir, Appl. Phys. Lett. 92, 143902 (2008).

    Google Scholar 

  39. S. Ebrahimi, R. Sabbaghi-Nadooshan, and M.B. Tavakoli, Opt. Quantum Electron. 50, 324 (2018).

    Google Scholar 

  40. T. Inagaki, R. Hamm, E. Arakawa, and L. Painter, J. Chem. Phys. 61, 4246 (1974).

    CAS  Google Scholar 

  41. A. Sakurai, B. Zhao, and Z.M. Zhang, J. Quant. Spectrosc. Radiat. Transf. 149, 33 (2014).

    CAS  Google Scholar 

  42. B. Zhao and Z.M. Zhang, Acs Photonics 2, 1611 (2015).

    CAS  Google Scholar 

  43. S. Ebrahimi, Opt. Quantum Electron. 52, 87 (2020).

    CAS  Google Scholar 

  44. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).

    CAS  Google Scholar 

  45. R. Zafar and M. Salim, IEEE Sens. J. 15, 6313 (2015).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Navid P. Gandji (Pennsylvania State University College of Medicine) for his helpful discussions and cooperation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Bazgir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobasser, S., Poorgholam-Khanjari, S., Bazgir, M. et al. Highly Sensitive Reconfigurable Plasmonic Metasurface with Dual-Band Response for Optical Sensing and Switching in the Mid-Infrared Spectrum. J. Electron. Mater. 50, 120–128 (2021). https://doi.org/10.1007/s11664-020-08551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08551-7

Keywords

Navigation