Skip to main content

Advertisement

Log in

Photoluminescence Quenching and Photo-Induced Charge Transfer Processes in Poly(3-octylthiophene) Polymer Based Hybrid Nano-composites by Ion Irradiation for Possible Optoelectronic Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Structural and spectroscopy studies have been carried out on conducting polymer poly(3-octylthiophene) (P3OT) and its copper-doped ZnO (Cu-ZnO/P3OT) hybrid nanocomposites (HNCs) under swift heavy ion (SHI) irradiation at different electronic energy depositions. The photoluminescence (PL) spectra of irradiated films exhibit a significant decrease in the intensity of emissions at higher ion fluences which is ascribed to the trapping of a photo-induced electron-hole by irradiation-induced free radicals and extrinsic non-radiative trap centers leading to the quenching effects. The generation of such free radicals and non-radiative recombination centers occurred through a chemical transformation of polymers in terms of polymer chain disordering, chain scission, chain aggregation, and bond breaking by ion irradiation depending upon the electronic energy depositions and ion fluences. The structural, vibrational, morphological, and optical properties of the irradiated P3OT and Cu-ZnO/P3OT HNCs films have been studied. Interestingly, the glancing-angle x-ray diffraction patterns of irradiated films reveal that the polymer and HNC films retain their chemical structures after high electronic deposition at lower ion fluences which leads to insignificant degradation of polymer and HNCs. However, a relative change in the intensity of characteristic peaks of polymer and ZnO was observed at higher ion fluences and is attributed to the disordering of polymer chains by high electronic depositions. Fourier transform infrared spectroscopy (FTIR) measurements also show similar observation, attributed to a decrease in the intensity of a few methyl and octyl functional groups of P3OT and HNCs. Further, optical study has shown a significant modification in the process of inter-chain and interfacial charge transfer. Finally, from these concurrent effects, PL quenching and photo-induced charge carrier transfer processes are understood by developing a schematic charge transfer diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.O. Ansari, M.M. Khan, S.A. Ansari, and M.H. Cho, J. Saudi Chem. Soc. 19, 494 (2015).

    Article  Google Scholar 

  2. G. Ma, X. Liang, L. Li, R. Qiao, D. Jiang, Y. Ding, and H. Chen, Chemosphere 100, 146 (2014).

    Article  CAS  Google Scholar 

  3. J. Singh, R.G. Singh, H. Gupta, S. Ojha, and F. Singh, Opt. Mater. (Amst). 94, 316 (2019).

    Article  CAS  Google Scholar 

  4. M.O. Ansari, M.M. Khan, S.A. Ansari, J. Lee, and M.H. Cho, RSC Adv. 4, 23713 (2014).

    Article  CAS  Google Scholar 

  5. G.A.R. Maia, L.F.G. Larsson, A. Viomar, L.A.C. Matos, S.R.M. Antunes, E.C.R. Maia, M.F. Oliveira, M.T. Cunha, and P.R.P. Rodrigues, J. Mater. Sci.: Mater. Electron. 27, 8271 (2016).

    CAS  Google Scholar 

  6. L.W. Ji, W.S. Shih, T.H. Fang, C.Z. Wu, S.M. Peng, and T.H. Meen, J. Mater. Sci. 45, 3266 (2010).

    Article  CAS  Google Scholar 

  7. G. Mattioli, S.B. Dkhil, M.I. Saba, G. Malloci, C. Melis, P. Alippi, F. Filippone, P. Giannozzi, A.K. Thakur, and M. Gaceur, Adv. Energy Mater. 4, 1301694 (2014).

    Article  Google Scholar 

  8. K.J. Baeg, M. Binda, D. Natali, M. Caironi, and Y.Y. Noh, Adv. Mater. 25, 4267 (2013).

    Article  CAS  Google Scholar 

  9. B. Pradhan, A.K. Sharma, and A.K. Ray, J. Phys. D Appl. Phys. 42, 165308 (2009).

    Article  Google Scholar 

  10. J. Singh, R.G. Singh, S.K. Gautam, and F. Singh, J. Appl. Phys. 123, 174503 (2018).

    Article  Google Scholar 

  11. Z. Yuan, J. Yu, W. Ma, and Y. Jiang, Appl. Phys. A 106, 511 (2012).

    Article  CAS  Google Scholar 

  12. W.E. Mahmoud, J. Phys. D Appl. Phys. 42, 155502 (2009).

    Article  Google Scholar 

  13. H.-K. Seo, H. Kim, J. Lee, M.-H. Park, S.-H. Jeong, Y.-H. Kim, S.-J. Kwon, T.-H. Han, S. Yoo, and T.-W. Lee, Adv. Mater. 29, 1605587 (2017).

    Article  Google Scholar 

  14. R.D. McCullough, R.D. Lowe, M. Jayaraman, and D.L. Anderson, J. Org. Chem. 58, 904 (1993).

    Article  CAS  Google Scholar 

  15. Y. Zhao, G. Yuan, P. Roche, and M. Leclerc, Polymer (Guildf). 36, 2211 (1995).

    Article  CAS  Google Scholar 

  16. D. Dudenko, A. Kiersnowski, J. Shu, W. Pisula, D. Sebastiani, H.W. Spiess, and M.R. Hansen, Angew. Chemie Int. Ed. 51, 11068 (2012).

    Article  CAS  Google Scholar 

  17. M.J. Winokur, D. Spiegel, Y. Kim, S. Hotta, and A.J. Heeger, Synth. Met. 28, 419 (1989).

    Article  Google Scholar 

  18. E.A. Parlak, Sol. Energy Mater. Sol. Cells 100, 174 (2012).

    Article  CAS  Google Scholar 

  19. C.L. Huisman, A. Goossens, and J. Schoonman, Synth. Met. 138, 237 (2003).

    Article  CAS  Google Scholar 

  20. R.G. Singh, N. Gautam, S.K. Gautam, V. Kumar, A. Kapoor, and F. Singh, J. Renew. Sustain. Energy 5, 33134 (2013).

    Article  Google Scholar 

  21. T. Yamamoto, D. Komarudin, M. Arai, B.-L. Lee, H. Suganuma, N. Asakawa, Y. Inoue, K. Kubota, S. Sasaki, and T. Fukuda, J. Am. Chem. Soc. 120, 2047 (1998).

    Article  CAS  Google Scholar 

  22. P.J. Brown, D.S. Thomas, A. Köhler, J.S. Wilson, J.-S. Kim, C.M. Ramsdale, H. Sirringhaus, and R.H. Friend, Phys. Rev. B 67, 64203 (2003).

    Article  Google Scholar 

  23. H. Sirringhaus, P.J. Brown, R.H. Friend, and M.M. Nielsen, Nature 401, 685 (1999).

    Article  CAS  Google Scholar 

  24. L. Calcagno, G. Compagnini, and G. Foti, Nucl. Inst. Methods Phys. Res. B 65, 413 (1992).

    Article  Google Scholar 

  25. V.N. Popok, Rev. Adv. Mater. Sci. 30, 1 (2012).

    CAS  Google Scholar 

  26. R.C. Ramola, A. Alqudami, S. Chandra, S. Annapoorni, J.M.S. Rana, R.G. Sonkawade, F. Singh, and D.K. Avasthi, Radiat. Eff. Defects Solids 163, 151 (2008).

    Article  Google Scholar 

  27. M.P.S. Rana, F. Singh, K. Joshi, S. Negi, and R.C. Ramola, Thin Solid Films 616, 34 (2016).

    Article  CAS  Google Scholar 

  28. A. Kaur, A. Dhillon, G.B.V.S. Lakshmi, Y. Mishra, and D.K. Avasthi, Mater. Chem. Phys. 131, 436 (2011).

    Article  CAS  Google Scholar 

  29. T. Sharma, R. Singhal, R. Vishnoi, G.B.V.S. Lakshmi, S. Chand, D.K. Avasthi, A. Kanjilal, and S.K. Biswas, Vacuum 135, 73 (2017).

    Article  CAS  Google Scholar 

  30. R. L. Clough, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 185, 8 (2001).

  31. V. N. Popok, I. I. Azarko, V. B. Odzhaev, A. Toth, and R. I. Khaibullin, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 178, 305 (2001).

  32. R. Singh, S.K. Arora, and D. Kanjilal, Mater. Sci. Semicond. Process. 4, 425 (2001).

    Article  CAS  Google Scholar 

  33. M.L. Bharti, F. Singh, R.C. Ramola, and V. Joshi, Opt. Mater. (Amst). 73, 550 (2017).

    Article  CAS  Google Scholar 

  34. G. Lakshmi, A.M. Siddiqui, and M. Zulfequar, Radiat. Eff. Defects Solids 166, 427 (2011).

    Article  CAS  Google Scholar 

  35. A. Dhillon, A. Kaur, and D.K. Avasthi, Thin Solid Films 519, 998 (2010).

    Article  CAS  Google Scholar 

  36. J. Prakash, A. Tripathi, S.A. Khan, S. Kumar, F. Singh, J.K. Tripathi, and J. Tripathi, Radiat. Eff. Defects Solids 166, 682 (2011).

    Article  CAS  Google Scholar 

  37. M.D. Migahed and H.M. Zidan, Curr. Appl. Phys. 6, 91 (2006).

    Article  Google Scholar 

  38. G. Lakshmi, A.M. Siddiqui, and M. Zulfequar, Int. J. Polym. Mater. 59, 970 (2010).

    Article  CAS  Google Scholar 

  39. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 1818 (2010).

  40. X. Peng, L. Zhang, Y. Chen, F. Li, and W. Zhou, Appl. Surf. Sci. 256, 2948 (2010).

    Article  CAS  Google Scholar 

  41. E.M. Therézio, J.L. Duarte, E. Laureto, E. Di Mauro, I.L. Dias, A. Marletta, and H. de Santana, J. Phys. Org. Chem. 24, 640 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jitendra Singh or Fouran Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Gupta, H., Singh, R.G. et al. Photoluminescence Quenching and Photo-Induced Charge Transfer Processes in Poly(3-octylthiophene) Polymer Based Hybrid Nano-composites by Ion Irradiation for Possible Optoelectronic Applications. J. Electron. Mater. 50, 85–99 (2021). https://doi.org/10.1007/s11664-020-08545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08545-5

Keywords

Navigation