Skip to main content

RF Analysis of Double-Gate Junctionless Tunnel FET for Wireless Communication Systems: A Non-quasi Static Approach

Abstract

The optimum and acceptable combination of control gate (CG) process parameters, such as dielectric materials, thickness, and metal work function for a double-gate junctionless tunnel field-effect transistor, remain a subject of great interest among researchers. We report here on the significant impact of CG process variations on the radio-frequency (RF) parameters of this device structure. Studies carried out using a non-quasi-static model with CG process variations have been analyzed for current gain (h21) and unilateral power gain with the help of a Silvaco Atlas device simulator. Systematic investigations reveal that the combination of CG process parameters, such as dielectric material (SiO2) with the thickness of 2 nm and CG metal (aluminum-〈100〉), provide the optimum RF characteristics, i.e., fT (2.9 GHz) and fmax (15 GHz), while maintaining the switching ratio (0.161 × 109), intrinsic capacitances (Cgg = 0.7 fF), and transconductance (3.8 μS) at the bias conditions of Vgs (1 V) and Vds (1 V). The results have been thoroughly interpreted from energy band diagrams and the associated band-to-band tunneling rate. The studies reported here may prove to be useful for further exploring the use of the suggested device structure for Internet of Everything communications and other related applications.

This is a preview of subscription content, access via your institution.

References

  1. M. Badaroglu, More Moore (IEEE, 2017), https://irds.ieee.org/roadmap. Accessed 13 November 2019.

  2. M.T. Barros, R. Mullins, and S. Balasubramaniam, IEEE Trans. Veh. Technol. 66, 5647 (2016).

    Google Scholar 

  3. S. Agarwal, Beyond CMOS (IEEE, 2017), https://irds.ieee.org/roadmap. Accessed 13 November 2019.

  4. M.T. Bohr and I.A. Young, IEEE Micro 37, 20 (2017).

    Google Scholar 

  5. J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI (Berlin: Springer, 2004), p. 91.

    Google Scholar 

  6. T. Sekigawa, Solid State Electron. 27, 827 (1984).

    Google Scholar 

  7. T. Mukaiyama, K.-I. Saito, H. Ishikuro, M. Takamiya, T. Saraya, and T. Hiramoto, Solid State Electron. 42, 1623 (1998).

    CAS  Google Scholar 

  8. M. Bavir, A. Abbasi, and A.A. Orouji, Silicon 12, 1593 (2019).

    Google Scholar 

  9. C.H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, IEEE Trans. Electron Devices 43, 1742 (1996).

    Google Scholar 

  10. D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda, Tech. Digest IEEE Int. Electron Devices Meet. 833 (1989).

  11. J.P. Colinge, Microelectron. Eng. 84, 2071 (2007).

    CAS  Google Scholar 

  12. E. Takeda, H. Matsuoka, Y. Igura, and S. Asai, Tech. Digest IEEE Int. Electron Devices Meet. 402 (1988).

  13. K. Boucart and A.M. Ionescu, IEEE Trans. Electron Devices 54, 1725 (2007).

    CAS  Google Scholar 

  14. J. Madan and R. Chaujar, Superlattices Microstruct. 100, 401 (2016).

    CAS  Google Scholar 

  15. J. Madan, M. Dassi, R. Pandey, R. Chaujar, and R. Sharma, Superlattices Microstruct. 139, 106397 (2020).

    CAS  Google Scholar 

  16. A. Vladimirescu, A. Amara, and C. Anghel, Solid State Electron. 70, 67 (2012).

    Google Scholar 

  17. D.B. Abdi and M.J. Kumar, IEEE J. Electron Devices Soc. 2, 187 (2014).

    Google Scholar 

  18. B.V. Chandan, S. Dasari, K. Nigam, S. Yadav, S. Pandey, and D. Sharma, Micro Nano Lett. 13, 1653 (2018).

    CAS  Google Scholar 

  19. S. Shekhar, J. Madan, and R. Chaujar, Appl. Phys. A 124, 739 (2018).

    CAS  Google Scholar 

  20. B. Ghosh and M.W. Akram, IEEE Electron Device Lett. 34, 585 (2013).

    Google Scholar 

  21. R.J. Hueting, B. Rajasekharan, C. Salm, and J. Schmitz, IEEE Electron Device Lett. 29, 1367 (2008).

    Google Scholar 

  22. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’neill, A. Blake, and M. White, Nat. Nanotechnol. 5, 225 (2010).

    CAS  Google Scholar 

  23. Y. Goswami, B. Ghosh, and P.K. Asthana, RSC Adv. 4, 10762 (2014).

    Google Scholar 

  24. R.M.I. Abadi and S.A.S. Ziabari, Microelectron. Eng. 162, 15 (2016).

    Google Scholar 

  25. S.H. Tahaei, S.S. Ghoreishi, R. Yousefi, and H. Aderang, Superlattices Microstruct. 125, 175 (2019).

    Google Scholar 

  26. J. Madan, R. Pandey, R. Sharma, and R. Chaujar, Appl. Phys. A 125, 600 (2019).

    Google Scholar 

  27. A.S. Roy, J.M. Vasi, and M.B. Patil, IEEE Trans. Electron Devices 50, 2401 (2003).

    Google Scholar 

  28. S. Cho, K.R. Kim, B.-G. Park, and I.M. Kang, IEEE Trans. Electron Devices 58, 1388 (2011).

    Google Scholar 

  29. S. Cho, J.S. Lee, K.R. Kim, B.-G. Park, J.S. Harris, and I.M. Kang, IEEE Trans. Electron Devices 58, 4165 (2011).

    Google Scholar 

  30. A.M. Ionescu and H. Riel, Nature 479, 334 (2011).

    Google Scholar 

  31. T. Poiroux, F. Andrieu, O. Weber, C. Fenouillet-Béranger, C. Buj-Dufournet, P. Perreau, L. Tosti, L. Brevard, and O. Faynot, Semiconductor-on-Insulator Materials for Nanoelectronics Applications (Berlin: Springer, 2011), p. 156.

    Google Scholar 

  32. C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, Appl. Phys. Lett. 94, 053511 (2009).

    Google Scholar 

  33. J. Hölzl and F.K. Schulte, Solid Surf. Phys (Berlin: Springer, 1979), pp. 86–93.

    Google Scholar 

  34. T. Nagase, K. Gamo, T. Kubota, and S. Mashiko, Thin Solid Films 499, 280 (2006).

    Google Scholar 

  35. S. Saurabh and M.J. Kumar, Fundamentals of Tunnel Field-Effect Transistors, 4th ed. (London: Taylor & Francis, 2016), pp. 35–60.

    Google Scholar 

  36. Atlas User Manual (SILVACO int., 2004), https://dynamic.silvaco.com/dynamicweb/jsp/downloads. Accessed 1 Sept 2019.

  37. T. Goudon, V. Miljanović, and C. Schmeiser, SIAM J. Appl. Math. 67, 1183 (2007).

    Google Scholar 

  38. S. Jain and D. Roulston, Solid State Electron. 34, 453 (1991).

    CAS  Google Scholar 

  39. A. Schenk, Solid State Electron. 35, 1585 (1992).

    CAS  Google Scholar 

  40. A. Biswas, S.S. Dan, C. Le Royer, W. Grabinski, and A.M. Ionescu, Microelectron. Eng. 98, 334 (2012).

    CAS  Google Scholar 

  41. W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, Solid State Electron. 32, 839 (1989).

    Google Scholar 

  42. I.M. Kang, J.-S. Jang, and W.Y. Choi, Jpn. J. Appl. Phys. 50, 124301 (2011).

    Google Scholar 

  43. W.Y. Choi, B.-G. Park, J.D. Lee, and T.-J.K. Liu, IEEE Electron Device Lett. 28, 744 (2007).

    Google Scholar 

  44. D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th ed. (New York: McGraw-Hill, 2012), p. 462.

    Google Scholar 

  45. I.M. Kang and H. Shin, IEEE Trans. Nanotechnol. 5, 206 (2006).

    Google Scholar 

  46. Y. Yang, X. Tong, L.-T. Yang, P.-F. Guo, L. Fan, and Y.-C. Yeo, IEEE Electron Device Lett. 31, 752 (2010).

    CAS  Google Scholar 

  47. S. Mason, Trans. IRE Prof. Group Circuit Theory CT-1, 20 (1954).

    Google Scholar 

  48. H. Aghandeh and S.A.S. Ziabari, Superlattices Microstruct. 111, 103 (2017).

    CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Chitkara University management for their support and permission to communicate this research paper. All the members of VLSI Center of Excellence, Chitkara University, Punjab are thanked for their time to engage in valuable discussions related to this work. Dr Rahul Pandey acknowledges the support from DST SRG to procure SILVACO ATLAS tool with File No. SRG/2019/000941.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaya Madan, Rahul Pandey or Rajnish Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Madan, J., Pandey, R. et al. RF Analysis of Double-Gate Junctionless Tunnel FET for Wireless Communication Systems: A Non-quasi Static Approach. J. Electron. Mater. 50, 138–154 (2021). https://doi.org/10.1007/s11664-020-08538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08538-4

Keywords

  • Band-to-band tunneling
  • charge plasma
  • non-quasi static
  • DG TFET
  • Wentzel–Kramers–Brillouin approximation