Skip to main content

Advertisement

Log in

Structural Features and Optical Properties of CH3NH3Pb(1−x)SnxCl3 Thin-Film Perovskites for Photovoltaic Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In alkyl ammonium lead halide based perovskites, the replacement of toxic Pb+2 with a suitable nontoxic divalent metal cation without losing the photovoltaic performance is one of the prime challenges to the researchers. The understanding of the effect of replacing Pb+2 on the structural and optical properties of alkyl ammonium lead halide based perovskites, and thereafter correlating their photovoltaic performances, comprise a fundamental study which is important towards developing efficient and non-toxic solar cells. In the present work, we used a wet chemical process to substitute Pb+2 with Sn+2 in different proportions into CH3NH3PbxSn(1−x)Cl3. The value of the Goldschmidt tolerance factor, which is a measure of structural stability of the perovskite lattice, was estimated theoretically. The theoretical calculations were correlated further with the experimentally obtained x-ray diffraction patterns of the original and substituted perovskites. The optical properties of CH3NH3Pb(1−x)SnxCl3 (0 ≤ x ≤ 1) perovskite thin-films were investigated by the ultraviolet–visible (UV–vis) absorption spectroscopy. The bandgap energy (Eg) for CH3NH3Pb(1−x)SnxCl3(0 ≤ x ≤ 1) were estimated from the optical absorption spectra. The Urbach energy (EU) which predicts defects, disorder and crystalline imperfections within semiconducting thin-films were estimated for the prepared perovskite thin films. The steepness parameter which apprises about strength of electron–phonon (Ee–p) interaction within perovskites were also estimated from the optical absorbance spectra to understand the effect of replacing Pb+2 with Sn+2. In addition, the variations in the surface morphologies of the prepared perovskites were studied using scanning electron microscopy. The I–V characteristics of the different cells were analysed and, finally, we attempted to correlate their photovoltaic performances with the opto-structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fu, Sol. Energy Mater. Sol. Cells 193, 107 (2019).

    CAS  Google Scholar 

  2. W. Geng, L. Zhang, Y.N. Zhang, W.M. Lau, and L.M. Liu, J. Phys. Chem. C 34, 19565 (2014).

    Google Scholar 

  3. S.A. Moyez and S. Roy, Sol. Energy Mater. Sol. Cells 185, 145 (2018).

    CAS  Google Scholar 

  4. C. Liu, J. Fan, H. Li, C. Zhang, and Y. Mai, Sci. Rep. 6, 35705 (2016).

    CAS  Google Scholar 

  5. A.K. Jena, A. Kulkarni, and T. Miyasaka, Chem. Rev. 119, 3036 (2019).

    CAS  Google Scholar 

  6. N. Torabi, A. Behjat, Y. Zhou, P. Docampo, R.J. Stoddard, H.W. Hillhouse, and T. Ameri, Mater. Today Energy 12, 70 (2019).

    Google Scholar 

  7. S. Wang, Y. Jiang, E.J. Juarez-Perez, L.K. Ono, and Y. Qi, Nat. Energy 2, 16195 (2017).

    CAS  Google Scholar 

  8. Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, and S. Liu, Adv. Mater. 15, 5176 (2015).

    Google Scholar 

  9. P. Gao, M. Gratzel, and M.K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).

    CAS  Google Scholar 

  10. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, Nat. Mater. 13, 897 (2014).

    CAS  Google Scholar 

  11. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Nano Lett. 13, 1764 (2013).

    CAS  Google Scholar 

  12. H. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, and M.G. Kanatzidis, Nat. Photon. 8, 489 (2014).

    CAS  Google Scholar 

  13. Z.R. Zhao, F.D. Gu, Y.L. Li, W.H. Sun, S.Y. Ye, H.X. Rao, Z.W. Liu, Z.Q. Bian, and C.H. Huang, Adv. Sci. 4, 1700204 (2017).

    Google Scholar 

  14. T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baike, Z.Y. Zhang, M. Sherburne, S.Z. Li, M. Asta, N. Mathews, and S.G. Mhaisalkar, J. Mater. Chem. A 3, 23829 (2015).

    CAS  Google Scholar 

  15. I. Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank, T. Rath, and G. Trimmel, A.C.S. Appl. Energy Mater. 1, 343 (2018).

    CAS  Google Scholar 

  16. M. Pazoki, M.B. Johansson, H.M. Zhu, P. Broqvist, T. Edvinsson, G. Boschloo, and E.M.J. Johansson, J. Phys. Chem. C 120, 29039 (2016).

    CAS  Google Scholar 

  17. B.W. Park, B. Philippe, X.L. Zhang, H. Remsmo, G. Boschloo, and E.M.J. Johansson, Adv. Mater. 27, 6806 (2015).

    CAS  Google Scholar 

  18. Z. Zhang, X.W. Li, X.H. Xia, Z. Wang, Z.B. Huang, B.L. Lei, and Y. Gao, J. Phys. Chem. Lett. 8, 4300 (2017).

    CAS  Google Scholar 

  19. B. Saparov, F. Hong, J.P. Sun, H.S. Duan, W.W. Meng, S. Cameron, I.G. Hill, Y.F. Yan, and D.B. Mitzi, Chem. Mater. 27, 5622 (2015).

    CAS  Google Scholar 

  20. I.M. Boopathi, P. Karuppuswamy, A. Singh, C. Hanmandlu, L. Lin, S.A. Abbas, C.C. Chang, P.C. Wang, G. Li, and C.W. Chu, J. Mater. Chem. A 5, 20843 (2017).

    CAS  Google Scholar 

  21. S.A. Moyez and S. Roy, J. Nanopart. Res. 20, 5 (2018).

    Google Scholar 

  22. B. Lee, A. Krenselewski, S.I. Baik, D.N. Seidman, and R.P.H. Chang, Sustain. Energy Fuels 1, 710 (2017).

    CAS  Google Scholar 

  23. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Adv. Funct. Mater. 24, 3250 (2014).

    CAS  Google Scholar 

  24. M. Wang, Z. Zang, B. Yang, X. Hu, K. Sun, and L. Sun, Sol. Energy Mater. Sol. Cells 185, 117 (2018).

    CAS  Google Scholar 

  25. A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip, R. Comin, and E.H. Sargent, Nano Lett. 14, 6281 (2014).

    CAS  Google Scholar 

  26. S. Luo and W.A. Daoud, Materials 9, 123 (2016).

    Google Scholar 

  27. J. Even, L. Pedesseau, and C. Katan, J. Phys. Chem. C 118, 11566 (2014).

    CAS  Google Scholar 

  28. H.-J. Feng, T.R. Paudel, E.Y. Tsymbal, and X.C. Zeng, J. Am. Chem. Soc. 137, 8227 (2015).

    CAS  Google Scholar 

  29. Y. Ando, T. Oku, and Y. Ohishi, Jpn. J. Appl. Phys. 57, 02CE02 (2018).

    Google Scholar 

  30. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, and S. Hayase, J. Phys. Chem. Lett. 5, 1004 (2014).

    CAS  Google Scholar 

  31. K. Zhao, R. Munir, B. Yan, Y. Yang, and T. Kim, J. Mater. Chem. A 3, 20554 (2015).

    CAS  Google Scholar 

  32. G. Kieslich, S. Sun, and A.K. Cheetham, Chem. Sci. 6, 3430 (2015).

    CAS  Google Scholar 

  33. C.A. Randall, A.S. Bhalla, T.R. Shrout, and L.E. Cross, J. Mater. Res. 5, 829 (1990).

    CAS  Google Scholar 

  34. G. Kieslich, S. Sun, and A.K. Cheetham, Chem. Sci. 5, 4712 (2014).

    CAS  Google Scholar 

  35. H.B. Borchert, E.V. Shvechenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, Langmuir 21, 1931–1936 (2005).

    CAS  Google Scholar 

  36. V. Tallapaly, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater. 28, 5406 (2016).

    Google Scholar 

  37. V. Tallapaly, T.A. Nakagawara, D.O. Demchenko, U. Ozguir, and I.U. Arachchige, Nanoscale 10, 20296–20305 (2018).

    Google Scholar 

  38. O.N. Yunakova, V.K. Miloslavskii, and E.N. Kovalenko, Opt. Spectrosc. 112, 91 (2012).

    CAS  Google Scholar 

  39. I.E. Castelli, J.M. García-Lastra, K.S. Thygesen, and K.W. Jacobsen, APL Mater. 2, 081514 (2014).

    Google Scholar 

  40. S. Qing, O. Yuhei, T. Taro, Y. Kenji, and H. Shuzi, in Perovskite Materials: Synthesis, Characterisation, Properties, and Applications, ed. by L. Pan (IntechOpen, 2016), p. 403.

  41. F. Hao, C.C. Stoumpos, R.P.H. Chang, and M.G. Kanatzidis, J. Am. Chem. Soc. 136, 8094 (2014).

    CAS  Google Scholar 

  42. Y.Q. Huanga, J. Sua, Q.F. Lia, D. Wang, L.H. Xua, and Y. Baia, Phys. B: Condens. Matter. 563, 107 (2019).

    Google Scholar 

  43. G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, and O.M. Bakr, J. Phys. Chem. Lett. 6, 3781 (2015).

    CAS  Google Scholar 

  44. Y. Yuan, R. Xu, H.T. Xu, F. Hong, F. Xu, and L. Wang, Chin. Phys. B 24, 116302 (2015).

    Google Scholar 

  45. F. Urbach, Phys. Rev. 92, 1324 (1953).

    CAS  Google Scholar 

  46. A.S. Hassanien and A.A. Akl, Superlattice Microst. 89, 153 (2016).

    CAS  Google Scholar 

  47. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  48. C.B. Hübschle, G.M. Sheldricka, and B. Dittrich, J. Appl. Crystallogr. 44, 1281 (2011).

    Google Scholar 

  49. D.C. Palmer and Z. Kristallogr, Cryst. Mater. 230, 559 (2015).

    CAS  Google Scholar 

  50. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).

    CAS  Google Scholar 

Download references

Funding

This work was supported by Science and Engineering Research Board (SERB) Grants funded by Department of Science and Technology (DST) Central, Government of India through Teachers Associateship for Research Excellence (TAR/2018/000195) [S. Roy] and University Grants Commission (UGC), India (F1-17.1/2014-15/MANF-2014-15-MUS-WES-47983) [S. A. Moyez].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasis Roy.

Ethics declarations

Data available in article. The data that supports the findings of this study are available within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyez, S.A., Maitra, S., Mukherjee, K. et al. Structural Features and Optical Properties of CH3NH3Pb(1−x)SnxCl3 Thin-Film Perovskites for Photovoltaic Applications. J. Electron. Mater. 49, 7133–7143 (2020). https://doi.org/10.1007/s11664-020-08529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08529-5

Keywords

Navigation