Skip to main content

Advertisement

Log in

Design and Optimization of High-Performance Through Hole Based MEMS Energy Harvester Using PiezoMUMPs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Piezoelectric energy harvesting is an emerging area of research to meet the demand of nonconventional energy sources. In this paper, we have designed and analysed high-performance micro-electromechanical system (MEMS) piezoelectric energy harvesters by incorporating a through-hole in the classical cantilever configuration. The harvesters are designed using piezoelectric multi-user MEMS processes (PiezoMUMPs), where aluminum nitride (AlN) piezoelectric material is chosen on silicon substrate. A unique optimization method is applied to deduce a critical ratio of hole length to cantilever length as 0.2–0.26 for structures that are not tip mass-based and 0.4–0.5 for tip mass-based structures to achieve maximum power harvesting capability. The performance of the proposed harvesters is observed to be superior in comparison to that reported in the literature in terms of improved voltage and power harvesting capability and less area requirement. The classical cantilever topology with unoptimized and optimized holes produces power of 423 nW with normalized power density (NPD) of 12.78 μW/mm\(^{3}/\hbox {g}^{2}\) and 490 nW with NPD of \(14.95 \mu \hbox {W}/\hbox {mm}^{3}/\hbox {g}^{2}\), respectively, at load resistance of \(1 \hbox { M}\Omega \) with application of 1 g acceleration. Furthermore, a comprehensive analysis of PiezoMUMPs design guidelines for designing hole-based harvesters is presented, and a layout of the harvesters to be fabricated is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kumar, G.M. Krishna, B. Mukherjee, and S. Sen, J. Micro/Nanolithogr. MEMS MOEMS 19(1), 015001 (2020).

    Article  CAS  Google Scholar 

  2. M. Kumar, B. Mukherjee, K.B.M.M. Swamy, and S. Sen, J. Microelectromech. Syst. 27(4), 656 (2018).

    Article  CAS  Google Scholar 

  3. J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Liao, and B.C. Cai, Microelectron. J. 39(5), 802 (2008).

    Article  Google Scholar 

  4. F. Meddour and Z. Dibi, IET Microwav. Antennas Propag 11(4), 483 (2016).

    Article  Google Scholar 

  5. H. Takise, T. Takahashi, M. Suzuki, and S. Aoyagi, Micro Nano Lett. 12(8), 569 (2017).

    Article  CAS  Google Scholar 

  6. M. Shin and I. Joe, Let Commun. 10(12), 1508 (2016).

    Google Scholar 

  7. Y. Dai, J. Chen, W. Tian, L. Xu, and S. Gao, IEEE Sens. J. (2020)

  8. D. Chaudhuri, S. Kundu, and N. Chattoraj, Microsyst. Technol. 25(4), 1437 (2019).

    Article  Google Scholar 

  9. G. Zhang and J. Hu, J. Electron. Mater. 43(11), 3912 (2014).

    Article  CAS  Google Scholar 

  10. P.K. Panda, B. Sahoo, M. Chandraiah, S. Raghavan, B. Manoj, J. Ramakrishna, and P. Kiran, J. Electron. Mater. 44(11), 4349 (2015).

    Article  CAS  Google Scholar 

  11. S. Priya, H.C. Song, Y. Zhou, R. Varghese, A. Chopra, S.G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, et al., Energy Harvest. Syst. 4(1), 3 (2019).

    Article  Google Scholar 

  12. G. Zhang, S. Gao, H. Liu, and S. Niu, Microsyst. Technol. 23(8), 3457 (2017).

    Article  Google Scholar 

  13. P. Biswal, N. Verma, S.K. Kar, and B. Mukherjee, in 2018 15th IEEE India Council International Conference (INDICON) (IEEE, 2018), pp. 1–5

  14. L. Dhakar, H. Liu, F. Tay, and C. Lee, Sens. Actuators A Phys. 199, 344 (2013).

    Article  CAS  Google Scholar 

  15. A. Batra, J. Currie, A. Alomari, M. Aggarwal, and C. Bowen, Measurement 114, 9 (2018).

    Article  Google Scholar 

  16. L.T. Lee, M.A. Mohamed, I. Yahya, J. Kulothungan, M. Muruganathan, and H. Mizuta, Microsys. Technol. 24(9), 3783 (2018).

    Article  CAS  Google Scholar 

  17. P. Li, S. Gao, H. Cai, and Y. Cui, Int. J. Appl. Electromagn. Mech. 47(1), 125 (2015).

    Article  Google Scholar 

  18. A.H. Alameh, M. Gratuze, and F. Nabki, IEEE Sens. J. 19(22), 10316 (2019).

    Article  CAS  Google Scholar 

  19. M. Gratuze, A.H. Alameh, and F. Nabki, Sensors 19(15), 3247 (2019).

    Article  CAS  Google Scholar 

  20. Y. Jia and A.A. Seshia, Microsys. Technol. 22(12), 2841 (2016).

    Article  Google Scholar 

  21. Y. Jia and A.A. Seshia, J. Microelectromech. Syst. 25(1), 108 (2015).

    Article  Google Scholar 

  22. Y. Jia, S. Du, and A.A. Seshia, J. Micromech. Microeng. 26(12), 124007 (2016).

    Article  Google Scholar 

  23. S. Nabavi and L. Zhang, J. Microelectromechan. Syst. 28(6), 1100 (2019).

    Article  CAS  Google Scholar 

  24. S. Nabavi and L. Zhang, in 2018 IEEE SENSORS (IEEE, 2018), pp. 1–4

  25. S. Nabavi and L. Zhang, IEEE Sens. J. 19(13), 4837 (2019).

    Article  CAS  Google Scholar 

  26. S. Nabavi and L. Zhang, J. Microelectromechan. Syst. 28(1), 77 (2018).

    Article  Google Scholar 

  27. F.A.C. de Oliveira and D.W. de Lima Monteiro, in 2017 2nd International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT) (IEEE), pp. 1–4

  28. S.S. Chauhan, M. Joglekar, and S. Manhas, IEEE Sens. J. 19(20), 9122 (2019).

    Article  CAS  Google Scholar 

  29. Y. Jia, S. Du, E. Arroyo, and A.A. Seshia, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, 2018), pp. 226–229

  30. Y. Tian, G. Li, Z. Yi, J. Liu, and B. Yang, J. Phys. Chem. Solids 117, 21 (2018).

    Article  CAS  Google Scholar 

  31. A. Cowen, G. Hames, K. Glukh, and B. Hardy, MEMSCAP Inc 1 (2014)

  32. S.N. Fernando and J. Chaffey, in Smart Structures, Devices, and Systems II, vol. 5649 (International Society for Optics and Photonics, 2005), vol. 5649, pp. 265–275

  33. M. Defosseux, M. Allain, E. Defay, and S. Basrour, Sens. Actuators A Phys. 188, 489 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Science and Engineering Research Board (SERB), DST, Govt. of India, for funding support for the work under the Sanction No. ECR/2017/000543. We also acknowledge IIT Kharagpur for the FEA simulation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Biswal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, P., Kar, S.K. & Mukherjee, B. Design and Optimization of High-Performance Through Hole Based MEMS Energy Harvester Using PiezoMUMPs. J. Electron. Mater. 50, 375–388 (2021). https://doi.org/10.1007/s11664-020-08528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08528-6

Keywords

Navigation