Interfacial Reactions of Ag and Ag-4Pd Stud Bumps with Sn-3Ag-0.5Cu Solder for Flip Chip Packaging

Abstract

The wettability and growth of intermetallic compounds (IMCs) of stud bump materials Ag, Ag-4Pd, Cu, and Au with Sn-3Ag-0.5Cu (SAC305) solder have been investigated. Stud bumps produced using wire bonding techniques are widely employed in flip chip assembly, especially in 3D integrated circuit packaging. The material of stud bumps is a key factor in the reliability of the bonds. The wettability of IMCs as studied in this study decreased in the order Au > Ag ≈ Ag-4Pd > Cu, indicating that Ag and Ag-alloy bumps were only slightly inferior to those of Au but superior to those of Cu. Moreover, the morphologies and growth behaviors of the IMCs were evaluated by aging at 100°C to 200°C for 100 h to 1000 h. Without the gold embrittlement effect found in Au or the Kirkendall void issue of Cu, IMCs contained mainly Ag3Sn at the interface after long-term aging tests, and thickened IMCs with Ag3Sn and PdSn4 were observed in the case of Ag-4Pd after prolonged aging for 1000 h at 200°C. The growth kinetics of the IMCs in Ag and Ag-4Pd stud bumps with SAC305 solder followed the Arrhenius equation, with activation energies of 56.45 kJ/mol and 57.37 kJ/mol, respectively. The formation mechanisms of the IMCs in Ag and Ag-4Pd stud bumps were found to be diffusion controlled. The results indicated that Ag and Ag-4Pd are better than Au and Cu for application as stud bump materials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J.H. Lau, Chip-level interconnections: wire bonds and solder bumps, in Low Cost Flip Chip Technologies: For DCA, WLCSP, and PBGA Assemblies, 1st edn. (McGraw Hill Professional, 2000), pp. 27–94.

  2. 2.

    D. Frear, Electronic packaging: flip-chip attachment, in Encyclopedia of Materials: Science and Technology, 2nd edn. (Elsevier, 2001), pp. 2672–2676.

  3. 3.

    R. Kiumi, S. Takeda, J. Yoshioka, F. Kuriyama, and N. Saito, in Proceedings: Electronic Components & Technology Conference (2005), pp. 120–126.

  4. 4.

    J. Jordan, in 27th Annual IEEE/SEMI International Electronics Manufacturing Technology Symposium. (2002), pp. 110–114.

  5. 5.

    M.H. Jeong and Y.B. Park, Appl. Phys. 11, S124 (2011).

    Google Scholar 

  6. 6.

    Y.K. Lee, Y.H. Ko, J.K. Kim, C.W. Lee, and S. Yoo, Electron. Mater. Lett. 9, 31 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    P.J. Opdahl, in Handbook of Visual Display Technology, ed. By J. Chen, W. Cranton, M. Fihn (Springer, Berlin, Heidelberg, 2016), pp. 1–9.

  8. 8.

    V. Koeninger, H.H. Uchida, and E. Fromm, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 18, 835 (1995).

  9. 9.

    C.H. Tsai, C.H. Chuang, H.H. Tsai, J.D. Lee, Dennis Chang, H.J. Lin, and T.H. Chuang, IEEE Trans. Compon., Packag., Manuf. Technol. 6, 298 (2016).

  10. 10.

    T.H. Chuang, H.H. Tsai, and J.D. Lee (2016), Stud bump and package structure thereof and method of manufacturing the same, US patent 9,425,168 B2.

  11. 11.

    Y.C. Jang, S.Y. Park, H.D. Kim, Y.C. Ko, K.W. Koo, M.R. Choi, H.G. Kim, N.K. Cho, I.T Kang, J.H. Yee, and S.H. Lim, in 16th Electronic Pack and Technology Conference (EPTC) (2014), pp. 704–708.

  12. 12.

    T.H. Chuang, C.C. Chang, C.H. Chuang, J.D. Lee, and H.H. Tsai, IEEE Trans. Compon., Packag., Manuf. Technol. 3, 3 (2013).

  13. 13.

    P.J. Kay and C.A. Mackay, Trans. Inst. Met. Finish. 54, 68 (1976).

    Article  Google Scholar 

  14. 14.

    V. Simic and Z. Marinkovic, Thin Solid Films 61, 149 (1979).

    CAS  Article  Google Scholar 

  15. 15.

    V. Simic and Z. Marinkovic, Thin Solid Films 209, 181 (1992).

    CAS  Article  Google Scholar 

  16. 16.

    J. Choi and S.J. An, J. Electr. Mater. 49, 4265 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Moriya, Y. Yamade, and R. Shinya, IEEE Trans. Compon., Packag., Manuf. Technol., Part B 21(4), 394 (1998).

  18. 18.

    T. Sakama and M. Kajihara, J. Alloys Compd. 475, 608 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    G.Y. Li and Y.C. Chan, Mater. Sci. Eng., B 57, 116 (1999).

    Article  Google Scholar 

  20. 20.

    G. Sharma, C.M. Eichfeld, and S.E. Mohney, J. Electron. Mater. 32, 1209 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    R. Ravi and A. Paul, J. Mater. Sci.: Mater. Electron. 23, 2306 (2012).

    CAS  Google Scholar 

  22. 22.

    Y. Orii, K. Toriyama, S. Kohara, H. Noma, K. Okamoto, D. Toyoshima, and K. Uenishi, Trans. Jpn. Inst. Electron. Packag. 4, 73 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    G.W. Xiao, C.H. Chan, A. Teng, J. Cai, and M.F. Yuen, IEEE Trans. Compon., Packag., Manuf. Technol. 24, 682 (2001).

  24. 24.

    M.S. Shin and Y.-H. Kim, J. Electr. Mater. 32, 1448 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    JEDEC Solid State Technology Association. Standard J-STD-002D: Solderability Tests for Component Leads, Terminations, Lugs, Terminals and Wires, (Arlington, VA, Oct. 2011).

  26. 26.

    A.D. Romig, Jr., Y.A. Chang, J.J. Stephens, D.R. Frear, V. Marcotte, and C. Lea, in Solder Mechanics: A State of the Art Assessment, ed. By D.R. Frear, W.B. Jones, and K.R. Kinsman, (The Minerals, Metals & Materials Society 1991), p. 30.

  27. 27.

    T.K. Lee, S. Zhang, C.C. Wong, and A.C. Tan, Mater. Sci. Eng., A 427, 136 (2006).

    Article  Google Scholar 

  28. 28.

    J.W. Yoon, S.W. Kim, and S.B. Jung, Mater. Trans. 45, 727 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    X. Deng, M. Koopman, N. Chawla, and K.K. Chawla, Mater. Sci. Eng., A 364, 240 (2004).

    Article  Google Scholar 

  30. 30.

    T.L. Su, L.C. Tsao, S.Y. Chang, and T.H. Chuang, J. Mater. Eng. Perform. 11, 365 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    T. Takenaka and M. Kajihara, Mater. Trans. 47, 822 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    Y.C. Lin, C.H. Chen, Y.Z. He, S.C. Chen, and T.H. Chuang, J. of Elec. Materi. 47, 3634 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    T.H. Chuang and C.H. Chen, Metall. Mater. Trans. A 49, 5904 (2018).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tung-Han Chuang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, CH., Hsu, SW. & Chuang, TH. Interfacial Reactions of Ag and Ag-4Pd Stud Bumps with Sn-3Ag-0.5Cu Solder for Flip Chip Packaging. Journal of Elec Materi 50, 249–257 (2021). https://doi.org/10.1007/s11664-020-08523-x

Download citation

Keywords

  • Ag-alloy stud bump
  • flip chip assembly
  • intermetallic compound
  • growth kinetics