Skip to main content
Log in

Analytical Modeling of Current and Quantum Capacitance of Single-Electron Transistor with Island Made of Armchair WSe2 Nanoribbon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single-electron transistors (SETs), which operate by quantum-mechanically controlled coulomb blockade and the single-electron tunneling effect, are promising candidate future nanoelectronic devices. A physics-based analytical model is developed to study the current and quantum capacitance of a SET with an island made of monolayer tungsten diselenide (WSe2) nanoribbon in an armchair pattern. It is noteworthy that the SET current is not degraded much in the coulomb blockade region, whereas outside this region, the SET current decreases with varying width of the nanoribbon, presumably due to the greater width of the potential well in the island that lowers the tunneling rate. Since atomically thin nanoribbon possesses quantum capacitance, which might cause further degradation in the SET performance, its influences are also studied. A three-band nearest-neighbor tight-binding model is applied to assimilate the details and information of the energy band formation into the quantum capacitance estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brotons-Gisbert, A. Branny, S. Kumar, R. Picard, R. Proux, M. Gray, K.S. Burch, K. Watanabe, T. Taniguchi, and B.D. Gerardot, Nat. Nanotechnol. 14, 442 (2019).

    Article  CAS  Google Scholar 

  2. S. Datta, Quantum Transport: Atom to Transistor, 1st ed. (New York: Cambridge University Press, 2005).

    Book  Google Scholar 

  3. K. Goser, Nanoelectronics and Nanosystems-From Transistors to Molecular and Quantum Devices, 1st ed. (Berlin: Springer, 2004), pp. 209–223.

    Book  Google Scholar 

  4. M.H. Devoret and R.J. Schoelkopf, Nature 406, 1039 (2000).

    Article  CAS  Google Scholar 

  5. V.V. Shorokhov, D.E. Presnov, S.V. Amitonov, Y.A. Pashkin, and V.A. Krupenin, Nanoscale 9, 613 (2017).

    Article  CAS  Google Scholar 

  6. V. Khadem Hosseini, M.T. Ahmadi, and R. Ismail, J. Electron. Mater. 47, 4799 (2018).

    Article  CAS  Google Scholar 

  7. Z. Durrani, M. Jones, F. Abualnaja, C. Wang, M. Kaestner, S. Lenk, C. Lenk, I.W. Rangelow, and A. Andreev, J. Appl. Phys. 124, 144502 (2018).

    Article  Google Scholar 

  8. A. Kormányos, V. Zólyomi, N.D. Drummond, and G. Burkard, Phys. Rev. X 4, 011034 (2014).

    Google Scholar 

  9. M.A. Kastner and D. Goldhaber-Gordon, Solid State Commun. 119, 245 (2001).

    Article  CAS  Google Scholar 

  10. D. Averin and K. Likharev, Mesoscopic Phenomena in Solids, 1st ed. (Amsterdam: North-Holland, 1991).

    Google Scholar 

  11. T.A. Fulton and G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

    Article  CAS  Google Scholar 

  12. L. Zhung, L. Guo, and S.Y. Chou, Appl. Phys. Lett. 72, 1205 (1998).

    Article  Google Scholar 

  13. C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, Nano Lett. 8, 2378 (2008).

    Article  CAS  Google Scholar 

  14. T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, and K. Ensslin, Mater. Today 13, 44 (2010).

    Article  CAS  Google Scholar 

  15. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  16. Y. Liu, X. Duan, Y. Huang, and X. Duan, Chem. Soc. Rev. 47, 6388 (2018).

    Article  CAS  Google Scholar 

  17. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y. Lee, Mater. Today 20, 116 (2017).

    Article  CAS  Google Scholar 

  18. M.K. Bera, R. Kharb, N. Sharma, A.K. Sharma, R. Sehrawat, S.P. Pandey, R. Mittal, and D.K. Tyagi, J. Electron. Mater. 48, 3504 (2019).

    Article  CAS  Google Scholar 

  19. L. Serge, Appl. Phys. Lett. 52, 501 (1988).

    Article  Google Scholar 

  20. A.C. Dias, F. Qu, D.L. Azevedo, and J. Fu, Phys. Rev. B 98, 075202 (2018).

    Article  CAS  Google Scholar 

  21. V. Khademhosseini, D. Dideban, M.T. Ahmadi, R. Ismail, and H. Heidari, ECS J. Solid State Sci. Technol. 7, M145 (2018).

    Article  CAS  Google Scholar 

  22. V. Khademhosseini, D. Dideban, M.T. Ahmadi, R. Ismail, and H. Heidari, J. Mater. Sci. Mater. Electron. 30, 8007 (2019).

    Article  CAS  Google Scholar 

  23. V. Khademhosseini, D. Dideban, M.T. Ahmadi, and R. Ismail, ECS J. Solid State Sci. Technol. 9, 021003 (2020).

    Article  CAS  Google Scholar 

  24. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New York: Wiley, 2006).

    Book  Google Scholar 

  25. N. Ma and D. Jena, 2D Mater. 2, 015003 (2015).

    Article  Google Scholar 

  26. N. Zettili, Quantum Mechanics: Concepts and Applications, 2nd ed. (New York: Wiley, 2009).

    Google Scholar 

  27. G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Phys. Rev. B 88, 085433 (2013).

    Article  Google Scholar 

  28. K. Kośmider, J.W. González, and J. Fernández-Rossier, Phys. Rev. B. 88, 245436 (2013).

    Article  Google Scholar 

  29. K.V. Shanavas and S. Satpathy, Phys. Rev. B 91, 235145 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Bera.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, M.K. Analytical Modeling of Current and Quantum Capacitance of Single-Electron Transistor with Island Made of Armchair WSe2 Nanoribbon. J. Electron. Mater. 49, 7400–7409 (2020). https://doi.org/10.1007/s11664-020-08511-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08511-1

Keywords

Navigation