Skip to main content
Log in

Effect of Mixed Transition Metal Ions in B2O3-V2O5-MoO3 Glass System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of having two different transition metal oxides in a glass matrix is an interesting phenomenon to study, as this kind of composition leads to various anomalous effects in terms of electrical and other physical properties. The present series of glasses were explored for density and DC electrical conduction in borate glass systems containing molybdenum and vanadium oxides. The glasses were synthesized using the melt-quench method and their amorphous characteristics were established by XRD techniques. The glasses were explored for density and DC electronic conduction in a temperature range between 318 K and 473 K. The estimated density, molar volume and oxygen packing density (OPD) varied non-linearly with increasing MoO3 content. The DC conduction and activation energy attained maximum and minimum around 0.15 mole fraction of MoO3. This was attributed to the fact that with the addition of MoO3 up to x = 0.15 molar fraction, the V2+ transition metal ions and Mo5+ transition metal ions may create bond defects and non-bridging oxygen (NBO) by altering the bonds of boron-oxygen-boron, boron-oxygen-molybdenum, boron-oxygen-vanadium. As a result, at x = 0.15 mole fraction of MoO3, the glass linkage among the bonds becomes close or tightly packed. Consequently, the net movement of ions begins effortlessly over the pathways of the tightly packed glass system. The high-temperature conduction data were analysed following Mott’s small polaron hopping theory, and the low-temperature conduction data were analysed in terms of Mott’s and Greave’s variable-range hopping conduction models. Several polaron-related parameters were estimated and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chakraborthy, H. Satou, and H. Sakata, J. Appl. Phys. 82, 5520 (1997).

    Google Scholar 

  2. A. Ghosh, J. Appl. Phys. 64, 2652 (1988).

    CAS  Google Scholar 

  3. U. Selvaraja and K.J. Rao, J. Non Cryst. Solids 72, 315 (1985).

    Google Scholar 

  4. K. Singh and J.S. Ratnam, Solid State Ionics 31, 221 (1988).

    CAS  Google Scholar 

  5. Y. Yito, K. Miyauchiand, and T. Oi, J. Non Cryst. Solids 57, 389 (1983).

    Google Scholar 

  6. M. Sayer and A. Mansingh, Phys. Rev. B 6, 4629 (1972).

    CAS  Google Scholar 

  7. A. Mogus-Milankovic, A. Santic, M. Karabulut, and D.E. Day, J. Non Cryst. Solids 330, 128 (2003).

    CAS  Google Scholar 

  8. A. Agarwal, S. Khasa, V.P. Seth, S. Sanghi, and M. Arora, J. Mol. Struct. 1060, 182 (2014).

    CAS  Google Scholar 

  9. G. Kaur, M. Kumar, A. Arora, O.P. Pandey, and K. Singh, J. Non Cryst. Solids 357, 858 (2011).

    CAS  Google Scholar 

  10. G. Kaur, O.P. Pandey, and K. Singh, J. Non Cryst. Solids 358, 2589 (2012).

    CAS  Google Scholar 

  11. E. Kaewnuam, N. Wantana, H.J. Kim, and J. Kaewkhao, J. Non Cryst. Solids 464, 96 (2017).

    CAS  Google Scholar 

  12. P.P. Pawar, S.R. Munishwar, S. Gautam, and R.S. Gedam, J. Lumin. 183, 79 (2017).

    CAS  Google Scholar 

  13. B. Dutta, N.A. Fahmy, and I.L. Pegg, J. Non Cryst. Solids 351, 1958 (2005).

    CAS  Google Scholar 

  14. H. El Mkami, B. Deroide, R. Backov, and J.V. Zanchetta, J. Phys. Chem. Solids 61, 819 (2000).

    Google Scholar 

  15. B. Dutta, N.A. Fahmy, N. Dutta, and I.L. Pegg, ICC Global Roadmap (Westerville: American Ceramic Society, 2006).

    Google Scholar 

  16. G. Rajashekara, J. Sangamesh, B. Arunkumar, N. Nagaraja, and M. Prashant Kumar, J. Non- Cryst. Solids 481, 289 (2018).

    CAS  Google Scholar 

  17. B. Vijaya Kumar, T. Sankarappa, M. Prashant Kumar, and S. Kumar, J. Non Cryst. Solids 355, 229 (2009).

    Google Scholar 

  18. S. Annamalai, R.P. Bhatta, I.L. Pegg, and B. Dutta, J. Non Cryst. Solids 358, 1380 (2012).

    CAS  Google Scholar 

  19. N.F. Mott, J. Non Cryst. Solids 1, 1 (1968).

    CAS  Google Scholar 

  20. I.G. Austin and N.F. Mott, Adv. Phys. 18, 41 (1969).

    CAS  Google Scholar 

  21. G.N. Greaves, J. Non Cryst. Solids 11, 427 (1973).

    CAS  Google Scholar 

  22. M. Pal, K. Hirota, Y. Tsujigami, and H. Sakata, J. Phys. D Appl. Phys. 34, 459 (2001).

    CAS  Google Scholar 

  23. M. Rada, S. Rada, P. Pascuta, and E. Culea, Spectrochim. Acta A 77, 832 (2010).

    CAS  Google Scholar 

  24. F.H. El Batal, M. Abo-Naf, and S.Y. Marzouk, Philos. Mag. 91, 341 (2011).

    Google Scholar 

  25. S. Ibrahim, M.M. Gomaa, and H. Darwis, J. Adv. Ceram. 3, 155 (2014).

    CAS  Google Scholar 

  26. S. Dhaiya, R. Punia, S. Murugaval, and A.S. Maan, Solid State Sci. 55, 98 (2016).

    Google Scholar 

  27. R.C. Agarwal and R. Kumar, J. Phys. D Appl. Phys. 29, 156 (1996).

    Google Scholar 

  28. V.C. Veeranna Gowda, Phys. B 426, 58 (2013).

    CAS  Google Scholar 

  29. M.I. Sayyed, M. Kawa Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, and S.O. Baki, J. Non Cryst. Solids 507, 30 (2019).

    CAS  Google Scholar 

  30. M. Prashant Kumar, T. Sankarappa, and A.M. Awasthi, Phys. B 403, 4088 (2008).

    Google Scholar 

  31. Y.F. Li, T.L. Zhang, J.G. Zhang, and K.B. Yu, J. Chem. Sci. 58, 1171 (2003).

    CAS  Google Scholar 

  32. M.M. El-Desoky and M.Y. Hassaan, Phys. Chem. Glasses 43, 1 (2002).

    CAS  Google Scholar 

  33. H. Sakata, K. Sega, and B.K. Chaudhari, Phys. Rev. B 60, 3230 (1999).

    CAS  Google Scholar 

  34. K. Sega, Y. Kuroda, and H. Sakata, J. Mater. Sci. 33, 138 (1998).

    Google Scholar 

  35. A. Dutta and A. Ghosh, J. Non Cryst. Solids 351, 203 (2005).

    CAS  Google Scholar 

  36. S. Moufida, W. Stambouli, N. Sdiri, and H. Elhouichet, Mater. Res. Bull. 89, 224 (2017).

    Google Scholar 

  37. A. Al-Shahrani, A. Al-Hajry, and M.M. El-Desoky, Phys. Stat. Sol. (a) 300, 378 (2003).

    Google Scholar 

  38. L. Srinivasa Rao, M. Srinivasa Reddy, M. Rami Reddy, and N. Veeraiah, J. Alloys Compd. 464, 472 (2008).

    Google Scholar 

  39. M. Prashant Kumar and T. Sankarappa, Solid State Ion. 178, 1719 (2008).

    Google Scholar 

  40. P.W. Anderson, Phy. Rev. 109, 1492 (1958).

    CAS  Google Scholar 

  41. T. Holstein, Ann. Phys. 8, 343 (1959).

    CAS  Google Scholar 

  42. D. Emin and T. Holstein, Ann. Phys. 53, 439 (1969).

    Google Scholar 

  43. H. Nasu and N. Soga, J. Non Cryst. Solids 53, 123 (1982).

    CAS  Google Scholar 

  44. N.F. Mott and E.A. Davis, Electronic Process in Non-Crystalline Solids, 2nd ed. (Oxford: Oxford University Press, 1979).

    Google Scholar 

  45. M.M. El-Desoky, J. Non Cryst. Solids 351, 3139 (2005).

    CAS  Google Scholar 

  46. M.S. Al-Assiri, S.A. Salem, and M.M. El-Desoky, J. Phys. Chem. Solids 67, 1873 (2006).

    CAS  Google Scholar 

  47. M.M. El-Desoky and M.S. Al-Assiri, Mater. Sci. Eng. B 137, 237 (2007).

    CAS  Google Scholar 

  48. N.F. Mott, Philos. Mag. 19, 835 (1969).

    CAS  Google Scholar 

  49. A. Gosh and B.K. Choudari, J. Non Cryst. Solids 83, 151 (1986).

    Google Scholar 

  50. M.P. Kumar and T. Sankarappa, J. Non Cryst. Solids 355, 295 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prashant Kumar.

Ethics declarations

Conflict of interest

The authors, Arunkumar V. Banagar, M. Prashant Kumar and N. Nagaraja declare no conflict of interest associated with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banagar, A.V., Prashant Kumar, M. & Nagaraja, N. Effect of Mixed Transition Metal Ions in B2O3-V2O5-MoO3 Glass System. J. Electron. Mater. 49, 7370–7378 (2020). https://doi.org/10.1007/s11664-020-08499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08499-8

Keywords

Navigation