Skip to main content
Log in

Cesium-Trifluoroacetate Doped MA/FA-Based Perovskite Solar Cells with Inverted Planar Structure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Triple cation perovskites are of particular interest among halide perovskites due to their impressive photovoltaic performance. In this paper, we introduce cesium trifluoroacetate (CsTFA) into methylammonium/formamidinium (MA/FA) perovskite to prepare a triple cation Cs/MA/FA perovskite solar cell with inverted planar structure. The effects of CsTFA concentration and spinning speed of the perovskite layer on the morphology of perovskite film and performance of the perovskite solar cell are studied. We find that the power conversion efficiency can be 10.55% when the spinning speed is 6000 rpm and CsTFA content is 5%. When, ethylammonium chlorine (MACl) is then employed to passivate the Cs/MA/FA-based perovskite thin film surface, the power conversion efficiency (PCE) is further improved to 12.19%. The results indicate that CsTFA can be a potential source of Cs ions for triple cation Cs/MA/FA perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bing, J. Kim, M. Zhang, J. Zheng, D.S. Lee, Y. Cho, X. Deng, C.F.J. Lau, Y. Li, M.A. Green, S. Huang, and A.W.Y. Ho-Baillie, Small 15, 1804858 (2019).

    Google Scholar 

  2. T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang, Y.-B. Cheng, and J. Zhong, Energ. Environ. Sci. 10, 2509 (2017).

    CAS  Google Scholar 

  3. H. Chen, Q. Wei, M.I. Saidaminov, F. Wang, A. Johnston, Y. Hou, Z. Peng, K. Xu, W. Zhou, Z. Liu, L. Qiao, X. Wang, S. Xu, J. Li, R. Long, Y. Ke, E.H. Sargent, and Z. Ning, Adv. Mater. 31, 1903559 (2019).

    CAS  Google Scholar 

  4. T. Duong, H.K. Mulmudi, H. Shen, Y. Wu, C. Barugkin, Y.O. Mayon, H.T. Nguyen, D. Macdonald, J. Peng, M. Lockrey, W. Li, Y.-B. Cheng, T.P. White, K. Weber, and K. Catchpole, Nano Energy. 30, 330 (2016).

    CAS  Google Scholar 

  5. Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, and J. You, Adv. Mater. 29, 1703852 (2017).

    Google Scholar 

  6. E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-Y. Yang, J.H. Noh, and J. Seo, Nature 567, 511 (2019).

    CAS  Google Scholar 

  7. C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, and Y. Mai, J. Am. Chem. Soc. 140, 3825 (2018).

    CAS  Google Scholar 

  8. H. Tan, F. Che, M. Wei, Y. Zhao, M.I. Saidaminov, P. Todorovic, D. Broberg, G. Walters, F. Tan, T. Zhuang, B. Sun, Z. Liang, H. Yuan, E. Fron, J. Kim, Z. Yang, O. Voznyy, M. Asta, and E.H. Sargent, Nat. Commun. 9, 3100 (2018).

    Google Scholar 

  9. M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li, D.H. Kim, N. Guo, J.J. Berry, K. Zhu, and Y. Zhao, Nat. Commun. 7, 12305 (2016).

    CAS  Google Scholar 

  10. F. Gao, Y. Zhao, X. Zhang, and J. You, Adv. Energy. Mater. 10, 1902650 (2019).

    Google Scholar 

  11. E.A. Alharbi, A.Y. Alyamani, D.J. Kubicki, A.R. Uhl, B.J. Walder, A.Q. Alanazi, J. Luo, A. Burgos-Caminal, A. Albadri, H. Albrithen, M.H. Alotaibi, J.-E. Moser, S.M. Zakeeruddin, F. Giordano, L. Emsley, and M. Grätzel, Nat. Commun. 10, 3008 (2019).

    Google Scholar 

  12. S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J.T. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, and H.J. Snaith, Nature 571, 245 (2019).

    CAS  Google Scholar 

  13. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, C. Xiao, Zeng, and J. Huang, Nat. Energ. 2, 17102 (2017).

    CAS  Google Scholar 

  14. B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin, Nat. Commun. 1076, 9 (2018).

    Google Scholar 

  15. J.K. Nam, S.U. Chai, W. Cha, Y.J. Choi, W. Kim, M.S. Jung, J. Kwon, D. Kim, and J.H. Park, Nano Lett. 17, 2028 (2017).

    CAS  Google Scholar 

  16. M. Kim, S.G. Motti, R. Sorrentino, and A. Petrozza, Energ. Environ. Sci. 11, 2609 (2018).

    CAS  Google Scholar 

  17. K. Wang, L. Zheng, T. Zhu, L. Liu, M.L. Becker, and X. Gong, Nano Energ. 67, 104229 (2019).

    Google Scholar 

  18. D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, and H.J. Snaith, Science 351, 151 (2016).

    CAS  Google Scholar 

  19. T. Singh and T. Miyasaka, Adv. Energy. Mater. 9, 1700677 (2018).

    Google Scholar 

  20. C. Wang, C. Zhang, S. Wang, G. Liu, H. Xia, S. Tong, J. He, D. Niu, C. Zhou, K. Ding, Y. Gao, and J. Yang, Sol. RRL. 2, 1700209 (2018).

    Google Scholar 

  21. B. Philippe, M. Saliba, J.-P. Correa-Baena, U.B. Cappel, S.-H. Turren-Cruz, M. Grätzel, A. Hagfeldt, and H. Rensmo, Chem. Mater. 29, 3589 (2017).

    CAS  Google Scholar 

  22. A. Solanki, P. Yadav, S.-H. Turren-Cruz, S.S. Lim, M. Saliba, and T.C. Sum, Nano. Energ. 58, 604 (2019).

    CAS  Google Scholar 

  23. T. Zhang, Q. Xu, F. Xu, Y. Fu, Y. Wang, Y. Yan, L. Zhang, and Y. Zhao, Sci. Bull. 64, 1608 (2019).

    CAS  Google Scholar 

  24. J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho, and N.-G. Park, Adv. Energ. Mater. 5, 1501310 (2015).

    Google Scholar 

  25. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry, and K. Zhu, Chem. Mater. 28, 284 (2015).

    Google Scholar 

  26. H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang, Y. Shang, Z. Ning, W. Zhang, W. Zheng, Y. Yan, S.V. Kershaw, L. Zhang, A.L. Rogach, and X. Yang, Nat. Commun. 10, 665 (2019).

    Google Scholar 

  27. Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan, and J. Chen, Joule. 2, 1356 (2018).

    Google Scholar 

  28. H. Yang, S. Cong, Y. Lou, L. Han, J. Zhao, Y. Sun, and G. Zou, ACS. Appl. Mater. Inter. 9, 31746 (2017).

    CAS  Google Scholar 

  29. M.M. Tavakoli, M. Saliba, P. Yadav, P. Holzhey, A. Hagfeldt, S.M. Zakeeruddin, and M. Grätzel, Adv. Energ. Mater. 9, 1802646 (2019).

    Google Scholar 

  30. K. Odysseas Kosmatos, L. Theofylaktos, E. Giannakaki, D. Deligiannis, M. Konstantakou, and T. Stergiopoulos, Energ. Environ. Mater. 2, 79 (2019).

    CAS  Google Scholar 

  31. B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu, J. Shi, D. Spronk, P.N. Rudd, Z. Holman, and J. Huang, Joule. 3, 177 (2019).

    CAS  Google Scholar 

  32. R.J. Stewart, C. Grieco, A.V. Larsen, G.S. Doucette, and J.B. Asbury, J. Phys. Chem. C 120, 12392 (2016).

    CAS  Google Scholar 

  33. G. Sadoughi, D.E. Starr, E. Handick, S.D. Stranks, M. Gorgoi, R.G. Wilks, M. Bar, and H.J. Snaith, ACS. Appl. Mater. Inter. 7, 13440 (2015).

    CAS  Google Scholar 

  34. B. Jeong, H. Han, Y.J. Choi, S.H. Cho, E.H. Kim, S.W. Lee, J.S. Kim, C. Park, D. Kim, and C. Park, Adv. Funct. Mater. 28, 1706401 (2018).

    Google Scholar 

  35. M. Abdi-Jalebi, Z. Andaji-Garmaroudi, A.J. Pearson, G. Divitini, S. Cacovich, B. Philippe, H. Rensmo, C. Ducati, R.H. Friend, and S.D. Stranks, ACS. Energy. Lett. 3, 2671 (2018).

    CAS  Google Scholar 

  36. Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, and H.J. Snaith, Nat. Energ. 2, 17135 (2017).

    CAS  Google Scholar 

  37. Q. Zeng, X. Zhang, X. Feng, S. Lu, Z. Chen, X. Yong, S.A.T. Redfern, H. Wei, H. Wang, H. Shen, W. Zhang, W. Zheng, H. Zhang, J.S. Tse, and B. Yang, Adv. Mater. 30, 1705393 (2018).

    Google Scholar 

  38. D.J. Kubicki, D. Prochowicz, A. Hofstetter, S.M. Zakeeruddin, M. Gratzel, and L. Emsley, J. Am. Chem. Soc. 139, 14173 (2017).

    CAS  Google Scholar 

  39. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldtd, and M. Grätzel, Energ. Environ. Sci 9, 1989 (2016).

    CAS  Google Scholar 

  40. R. Lindblad, N.K. Jena, B. Philippe, J. Oscarsson, D. Bi, A. Lindblad, S. Mandal, B. Pal, D.D. Sarma, O. Karis, H. Siegbahn, E.M.J. Johansson, M. Odelius, and H. Rensmo, J. Phys. Chem. C 119, 1818 (2015).

    CAS  Google Scholar 

  41. T. Singh, S. Öz, A. Sasinska, R. Frohnhoven, S. Mathur, and T. Miyasaka, Adv. Funct. Mater. 28, 1706287 (2018).

    Google Scholar 

  42. W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A.J. Barker, E. Tyukalova, Z. Hu, M. Kawecki, H. Wang, Z. Yan, X. Liu, X. Shi, K. Uvdal, M. Fahlman, W. Zhang, M. Duchamp, J.-M. Liu, A. Petrozza, J. Wang, L.-M. Liu, W. Huang, and F. Gao, Nat. Photonics 1, 418 (2019).

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (11874185) and Qinglan project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Dai.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Zhu, L., Zhang, Y. et al. Cesium-Trifluoroacetate Doped MA/FA-Based Perovskite Solar Cells with Inverted Planar Structure. J. Electron. Mater. 49, 7144–7152 (2020). https://doi.org/10.1007/s11664-020-08492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08492-1

Keywords

Navigation