Skip to main content
Log in

Effect of FA+ Fraction and Dipping Time on Performance of FAxMA1−xPbI3 Films and Perovskite Solar Cells

  • Progress and Challenges With Perovskite Materials and Devices
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of the formamidinium (FA)+ alloy fraction x and the dipping time on the properties of FAxMA1−xPbI3 thin films (where MA = methylammonium ) as well as the photovoltaic performance of perovskite solar cells (PSCs) have been studied. Mixed-organic-cation FAxMA1−xPbI3 thin films were prepared using a two-step solution deposition method in ambient air. PSCs with fluorine-doped tin oxide glass/compact TiO2/mesoporous TiO2/FAxMA1−xPbI3/carbon electrode structure were fabricated, aiming to reduce the fabrication costs and improve the stability of PSCs. The results indicated that, when the FA+ alloy fraction x was increased from 0 to 1, the x-ray diffraction (XRD) peaks shifted continuously to lower angle, while the absorption edge and photoluminescence (PL) peak shifted continuously towards longer wavelength. The Raman spectra of the FAxMA1−xPbI3 thin films, consisting of five typical peaks at 68.5 cm−1, 77.5 cm−1, 84.6 cm−1, 139.1 cm−1, and 283.2 cm−1, barely shifted with incorporation of FA+. In addition, the dipping time was shortened by using mixed solvents to prepare the PbI2 thin films. The PSCs based on FA0.4MA0.6PbI3 prepared with a dipping time of 15 min exhibited the highest average power conversion efficiency (PCE) of 8.64%, with 74.4% of the initial efficiency being retained after exposure to ambient air at room temperature with approximately 50% humidity for 700 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, Science 354, 206 (2016).

    Article  CAS  Google Scholar 

  2. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S.C. Ryu, J. Seo, and S.I. Seok, Nature 517, 476 (2015).

    Article  CAS  Google Scholar 

  3. N.J. Jeon, H. Na, E.H. Jung, T.Y. Yang, Y.G. Lee, G. Kim, H.W. Shin, S.I. Seok, J. Lee, and J. Seo, Nat. Energy 3, 682 (2018).

    Article  CAS  Google Scholar 

  4. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovolt. 24, 905 (2016).

    Article  Google Scholar 

  5. Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan, and G. Du, Nano Lett. 17, 313 (2017).

    Article  CAS  Google Scholar 

  6. J. Xing, F. Yan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H.V. Demir, X. Sun, A. Huan, and Q. Xiong, ACS Nano 10, 6623 (2016).

    Article  CAS  Google Scholar 

  7. A.R.B.M. Yusoff, H.P. Kim, X.L. Li, J. Kim, J. Jang, and M.K. Nazeeruddin, Adv. Mater. 29, 1602940 (2017).

    Article  Google Scholar 

  8. X.Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, Nat. Commun. 6, 7383 (2015).

    Article  CAS  Google Scholar 

  9. T. Matsushima, M.R. Leyden, T. Fujihara, C. Qin, A.S.D. Sandanayak, and C. Adachi, Appl. Phys. Lett. 115, 120601 (2019).

    Article  Google Scholar 

  10. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Energy Environ. Sci. 7, 2619 (2014).

    Article  CAS  Google Scholar 

  11. C. Motta, F. El-Mellouhi, and S. Sanvito, Sci. Rep. 5, 12746 (2015).

    Article  CAS  Google Scholar 

  12. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Pertrozza, and H.J. Snaith, Science 342, 341 (2013).

    Article  CAS  Google Scholar 

  13. Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, and R.H. Friend, Nat. Nanotechnol. 9, 687 (2014).

    Article  CAS  Google Scholar 

  14. B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini, Sci. Rep. 6, 6050 (2016).

    Google Scholar 

  15. R. Chatterjee, I.M. Pavlovetc, K. Aleshire, G.V. Hartland, and M. Kuno, ACS Energy Lett. 3, 469 (2018).

    Article  CAS  Google Scholar 

  16. O.J. Weber, B. Charles, and M.T. Weller, J. Mater. Chem. A 4, 15375 (2016).

    Article  CAS  Google Scholar 

  17. K. Jung, J.H. Lee, K. Oh, C. Im, J. Do, J. Kim, W.S. Chae, and M.J. Lee, Nano Energy 54, 251 (2018).

    Article  CAS  Google Scholar 

  18. S.K. Yadavalli, Y.Y. Zhou, and N.P. Padture, ACS Energy Lett. 3, 63 (2018).

    Article  CAS  Google Scholar 

  19. L.Q. Xie, L. Chen, Z.A. Nan, H.X. Lin, T. Wang, D.P. Zhan, J.W. Yan, B.W. Mao, and Z.Q. Tian, J. Am. Chem. Soc. 139, 3320 (2017).

    Article  CAS  Google Scholar 

  20. W. Li, J. Fan, J. Li, G. Niu, Y. Mai, and L. Wang, ACS Appl. Mater. Interfaces 8, 30107 (2016).

    Article  CAS  Google Scholar 

  21. X. Zheng, H. Chen, and Q. Li, Nano Lett. 17, 24962505 (2017).

    Google Scholar 

  22. H.S. Zheng, C.H. Li, A.X. Wei, J. Liu, Y. Zhao, and Z.M. Xiao, Int. J. Hydrogen Energy 43, 11403 (2018).

    Article  CAS  Google Scholar 

  23. Y. Zhang, G. Grancini, Y. Feng, A.M. Asiri, and M.K. Nazeeruddin, ACS Energy Lett. 2, 802 (2017).

    Article  CAS  Google Scholar 

  24. J. Duan, Z. Liu, Y. Zhang, K. Liu, T. He, F. Wang, J. Da, and P. Zhou, Opt. Mater. 85, 55 (2018).

    Article  CAS  Google Scholar 

  25. Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y. Yang, Y. Seung Rim, H. Zhao, Q. Chen, W. Shi, G. Li, and Y. Yang, Adv. Mater. 28, 2253 (2016).

    Article  CAS  Google Scholar 

  26. J. Wang, D. Lin, T. Zhang, M. Long, T. Shi, K. Chen, Z. Liang, J. Xu, and W.X.P. Liu, CrystEngComm 21, 736 (2019).

    Article  CAS  Google Scholar 

  27. V.H. Damle, L. Gouda, S. Tirosh, Y.R. Tischler, and A.C.S. Appl, Energy Mater. 1, 6707 (2018).

    CAS  Google Scholar 

  28. C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J. Snaith, A. Petrozza, and F. De Angelis, J. Phys. Chem. Lett. 5, 279 (2014).

    Article  CAS  Google Scholar 

  29. XXXX.

  30. O. Yaffe, Y. Guo, L.Z. Tan, D.A. Egger, T. Hull, C.C. Stoumpos, F. Zheng, T.F. Heinz, L. Kronik, M.G. Kanatzidis, J.S. Owen, A.M. Rappe, M.A. Pimenta, and L.E. Brus, Phys. Rev. Lett. 118, 136001 (2017).

    Article  Google Scholar 

  31. H.S. Zheng, C.H. Li, A.X. We, J. Liu, Y. Zhao, and Z.M. Xiao, J. Mater. Sci.: Mater. Electron. 29, 18868 (2018).

    CAS  Google Scholar 

  32. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Energy Environ. Sci. 7, 2934 (2014).

    Article  CAS  Google Scholar 

  33. M. Hiroshi, N. Yoshinaho, and N. Miharu, Chem. Lett. 9, 663 (1980).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (No. 61904040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixiang Wei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Wei, A., Luo, N. et al. Effect of FA+ Fraction and Dipping Time on Performance of FAxMA1−xPbI3 Films and Perovskite Solar Cells. J. Electron. Mater. 49, 7054–7064 (2020). https://doi.org/10.1007/s11664-020-08488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08488-x

Keywords

Navigation