Skip to main content
Log in

First Principle Study of Adsorption Behavior of PF5 Gas Molecule on S and Mo Vacancy MoS2 Monolayer

  • Asian Consortium ACCMS–International Conference ICMG 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The molybdenum disulfide monolayer (MoS2) is gaining more attention due to its attractive electronic property, and it is extensively used in different electronic applications. The presence of vacancies on the MoS2 monolayer leads to an increase in the conductivity of the material. In this work, we have investigated the adsorption behavior and estimated the gas-sensing properties of the S-vacancy (VS) and the Mo-vacancy (VMo) MoS2 monolayers and the two-probe MoS2 devices with phosphorus pentafluoride (PF5) gas molecule. To explore the sensing and electronic properties of VS and VMo MoS2 towards PF5 gas adsorption, the adsorption distance, adsorption energy, charge transfer, band structure, and density of the states have been analyzed using density functional theory in combination with Non-Equilibrium Green's Function. The results show that the PF5 gas molecule is allowed to adsorb on the S- and Mo-vacancy MoS2 monolayers through van der Waals interaction. The PF5 gas molecule shows adsorption distances of 3.3274 Å and 2.8673 Å, adsorption energies of − 0.1640 eV and − 0.3489 eV, and charge transfers of − 0.025 Q (e) and − 0.053 Q (e) on the VS/VMo MoS2 monolayers. To study the electron transport properties, the device density of the states, the transmission spectra, and the current–voltage characteristics of the VS/VMo MoS2 two-probe devices have been analyzed. The results predicted that the Mo-vacancy MoS2 device shows relatively more adsorption towards the PF5 gas molecule when compared with the VS MoS2 device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).

    Article  CAS  Google Scholar 

  2. C. Lee, R. Sundharam, M. Jaiswal, Y. Lu, and S. Hofmann, J. Phys. D Appl. Phys. 50, 440401 (2017).

    Article  CAS  Google Scholar 

  3. Q. Wang, P. Wu, G. Cao, and M. Huang, J. Phys. D Appl. Phys. 46, 505308 (2013).

    Article  CAS  Google Scholar 

  4. W. Ju, T. Li, X. Su, H. Li, X. Li, and D. Ma, Phys. Chem. Chem. Phys. 19, 20735 (2017).

    Article  CAS  Google Scholar 

  5. A.A. Ramanathan and I.O.P. Conf, Ser. Mater. Sci. Eng. 305, 012001 (2018).

    Google Scholar 

  6. D. Voiry, J. Yang, and M. Chhowalla, Adv. Mater. 28, 6197 (2016).

    Article  CAS  Google Scholar 

  7. D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, and C.N.R. Rao, ACS Nano 7, 4879 (2013).

    Article  CAS  Google Scholar 

  8. B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim, Y.J. Lee, S.G. Park, J.D. Kwon, C.S. Kim, M. Song, Y. Jeong, K.S. Nam, S. Lee, T.J. Yoo, C.G. Kang, B.H. Lee, H.C. Ko, P.M. Ajayan, and D.H. Kim, Sci. Rep. 5, 8052 (2015).

    Article  CAS  Google Scholar 

  9. J.M. Jasmine, A. Aadhityan, C.P. Kala, and D.J. Thiruvadigal, Appl. Surf. Sci. 489, 841 (2019).

    Article  CAS  Google Scholar 

  10. N. Izyumskaya, D.O. Demchenko, V. Avrutin, Ü. Özgür, and H. Morkoç, Turk. J. Phys. 38, 478 (2014).

    Article  CAS  Google Scholar 

  11. S.Y. Cho, S.J. Kim, Y. Lee, J.S. Kim, W. Bin Jung, H.W. Yoo, J. Kim, and H.T. Jung, ACS Nano 9, 9314 (2015).

    Article  CAS  Google Scholar 

  12. H. Yang, Y. Liu, C. Gao, L. Meng, Y. Liu, X. Tang, and H. Ye, J. Phys. Chem. C 123, 30949 (2019).

    Article  CAS  Google Scholar 

  13. B. Zhao, C. Shang, N. Qi, Z.Y. Chen, and Z.Q. Chen, Appl. Surf. Sci. 412, 385 (2017).

    Article  CAS  Google Scholar 

  14. Q. Yue, Z. Shao, S. Chang, and J. Li, Nanoscale Res. Lett. 8, 1 (2013).

    Article  CAS  Google Scholar 

  15. H.G. Abbas, T.T. Debela, S. Hussain, and I. Hussain, RSC Adv. 8, 38656 (2018).

    Article  CAS  Google Scholar 

  16. J. Ren, H. Liu, Y. Xue, and L. Wang, Nanoscale Res. Lett. 14, 293 (2019).

    Article  CAS  Google Scholar 

  17. D. Burman, R. Ghosh, S. Santra, S. Kumar Ray, and P. Kumar Guha, Nanotechnology 28 (2017).

  18. V. Vincent and J. Forensic, Leg. Investig. Sci. 1, 005 (2015).

    Google Scholar 

  19. F. Larsson, P. Andersson, P. Blomqvist, A. Lorén, and B.E. Mellander, J. Power Sources 271, 414 (2014).

    Article  CAS  Google Scholar 

  20. R. Chaurasiya and A. Dixit, Phys. Chem. Chem. Phys. 22, 13903 (2020).

    Article  CAS  Google Scholar 

  21. H. Li, M. Huang, and G. Cao, Phys. Chem. Chem. Phys. 18, 15110 (2016).

    Article  CAS  Google Scholar 

  22. A. Shokri and N. Salami, Sensors Actuators B 236, 378 (2016).

    Article  CAS  Google Scholar 

  23. W. Jin, Y. Guofeng, X. Junjun, L. Jianming, C. Qing, C. Dunjun, L. Hai, Z. Rong, and Z. Youdou, Sci. Rep. 8, 6 (2018).

    Article  CAS  Google Scholar 

  24. C.V. Nguyen, N.N. Hieu, and D.T. Nguyen, Nanoscale Res. Lett. 10, 1 (2015).

    Article  CAS  Google Scholar 

  25. D. Chen, X. Zhang, J. Tang, H. Cui, and Y. Li, Appl. Phys. A 124, 194 (2018).

    Article  CAS  Google Scholar 

  26. C.P. Kala and D.J. Thiruvadigal, J. Comput. Electron. 17, 580 (2018).

    Article  CAS  Google Scholar 

  27. K. Janani and D. John Thiruvadigal, Appl. Surf. Sci. 418, 406 (2017).

    Article  CAS  Google Scholar 

  28. W. Xu, P. Li, S. Li, B. Huang, C. Zhang, and P. Wang, Physica E 73, 83 (2015).

    Article  CAS  Google Scholar 

  29. D. Cao, H.B. Shu, T.Q. Wu, Z.T. Jiang, Z.W. Jiao, M.Q. Cai, and W.Y. Hu, Appl. Surf. Sci. 361, 199 (2016).

    Article  CAS  Google Scholar 

  30. J. Noh, H. Kim, and Y. Kim, Phys. Rev. B 89, 205417 (2014).

    Article  CAS  Google Scholar 

  31. Y. Cheng, Z. Zhu, W. Mi, Z. Guo, and U. Schwingenschlogl, Phys. Rev. B 87, 100401(R) (2013).

    Article  CAS  Google Scholar 

  32. W. Wang, C. Yang, L. Bai, M. Li, and W. Li, Nanomaterials 8, 74 (2018).

    Article  CAS  Google Scholar 

  33. M.G. Sensoy, D. Vinichenko, W. Chen, C.M. Friend, and E. Kaxiras, Phys. Rev. B 95, 1 (2017).

    Article  Google Scholar 

  34. S. Sivasathya, D.J. Thiruvadigal, and S.M. Jaya, Chem. Phys. Lett. 609, 76 (2014).

    Article  CAS  Google Scholar 

  35. S. Zhao, J. Xue, and W. Kang, Chem. Phys. Lett. 595–596, 35 (2014).

    Article  CAS  Google Scholar 

  36. M. Sharma, A. Kumar, P.K. Ahluwalia, A. Kumar, and P.K. Ahluwalia, Physica E 107, 117 (2019).

    Article  CAS  Google Scholar 

  37. L. Feng, A. Li, J. Su, Y. Zhang, and Z. Liu, Mater. Chem. Phys. 209, 146 (2018).

    Article  CAS  Google Scholar 

  38. C. Liu, H. Dong, Y. Ji, T. Hou, and Y. Li, Sci. Rep. 8, 1 (2018).

    Google Scholar 

  39. S. Ahmad and S. Mukherjee, Graphene 03, 52 (2014).

    Article  CAS  Google Scholar 

  40. S.C. Lu and J.P. Leburton, Nanoscale Res. Lett. 9, 1 (2014).

    Article  CAS  Google Scholar 

  41. W.H. Khoo and S.M. Sultan, in IEEE Int. Conf. Semicond. Electron. Proceedings, ICSE, pp. 221–224 (2014).

  42. J. Pang, Q. Yang, X. Ma, L. Wang, C. Tan, D. Xiong, H. Ye, and X. Chen, Phys. Chem. Chem. Phys. 19, 30852 (2017).

    Article  CAS  Google Scholar 

  43. X. Zhang, H. Cui, and Y. Gui, Sensors 17, 363 (2017).

    Article  CAS  Google Scholar 

  44. X.P. Chen, L.M. Wang, X. Sun, R.S. Meng, J. Xiao, H.Y. Ye, and G.Q. Zhang, IEEE Electron Device Lett. 38, 661 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

Department of Science and Technology, Ministry of Science and Technology (SR/FST/PSI-155/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Preferencial Kala.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meribah Jasmine, J., Preferencial Kala, C. & John Thiruvadigal, D. First Principle Study of Adsorption Behavior of PF5 Gas Molecule on S and Mo Vacancy MoS2 Monolayer. J. Electron. Mater. 50, 1668–1677 (2021). https://doi.org/10.1007/s11664-020-08480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08480-5

Keywords

Navigation